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Hydrodynamic flow of ions and atoms in partially ionized plasmas
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We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized
component and the neutral components have different flow velocities and kinetic temperatures. Starting from
the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters
between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge ex-
change. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary
mixture, in particular when the components drift with respect to each other. This was applied to a partially
ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have
further suggested a generalized version of the relaxation time approximation and obtained the contributions of
the interspecies encounters to the transport equations.
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[. INTRODUCTION tions (ionization and recombination in our case of ions and
neutral atomg3]), the quantities conserved in collisions are
Neutral atoms play an important role in the dynamics ofthe densities of the two particle species, thial momentum,
partially ionized gases when electromagnetic forces arand thetotal energy. When the local equilibrium distribution
present. Since they are unaffected by these forces, the atorissconstructed, Lagrange multipliers corresponding to the to-
exert an effective drag on the ions and electrons, and matal momentum density and the total energy density appear,
even flow separately. The effect of neutral atoms was showand these are the hydrodynamic velocity and the kinetic tem-
to be significant in various laboratory plasmas, such agerature.
Z-pinchplasma[ 1] andtokamakplasma[2,3]. In nature, this Traditionally, binary gas mixtures were studied assuming
effect was shown to be dominant during processes of stathe mixture is having a common single temperature for both
formation in stellar gas cloudgt—7]. The hydrodynamics gaseq9,10], or common single flow velocity like in regular
equations of motion in the case of separate flow of neutralnagnetohydrodynami¢8/HD). During the last two decades
atoms is usually obtained by considering the plasma as some attempts were made to study the separate flow of neu-
mixture of two interacting gaseous fluids, one consisting ofral species and charged species in tokamak edge plasma
ions and electron&harged-species fluidand the other con- [2,3], assuming that charge exchange reactions, ionization,
sisting of neutral atomsneutral-species fluid[1,3,8. The  and recombination are far more frequent than elastic colli-
interaction between the fluids is introducing additional termssions between the ions and the neutral atoms. In the present
in the flow equations for each fluid. The present paper igaper we consider the effect of elastic collisions, and show
concerned with the derivation of these contributions to thethat it can compare to—and even dominate over—the effect
separate fluids equations of motion. of charge exchange reactions. This occurs when the drift be-
The hydrodynamics of a gas, or gas mixture, is normallytween the ions and the atoms is much larger than their ther-
obtained by means of some variation of the Chapmanmal velocities. The reason that elastic collisions between at-
Enskog or Hilbert metho@i9—11. The hydrodynamic limit oms and ions were previously neglected was that only mild
occurs when collisions dominate the transport equation. Théow velocity differences were considered, as is indeed the
essence of the procedure is that quantities conserved in cddituation in tokamak edge plasma. There are, however, inter-
lisions are identified, and a local equilibrium distribution esting cases where a significant relative flow difference is
function, for which the entropy production vanishes is iden-established between the charged and the neutral components
tified (Boltzmann’sH theorem. The distribution function is  of the plasma. For example, we have previously studied a
expanded in a series whose initial term is the local equilib-specific Z-pinch experiment, i.e., a capillary discharge
rium distribution function. To first order, the collision term is pinch for soft-x-ray amplification, and found that the relative
linearized around local equilibrium, and the streaming termselocity difference, which is being developed between the
in the transport equation contain only the local equilibriumtwo species, exceeds their thermal velocities(dtyleast an
distribution function. The condition that the resulting linear order-of-magnitudé1].
integral equation be solvable is that the moments of the We start, in Sec. Il, by introducing a general procedure to
transport equation corresponding to the quantities conservagkrive the hydrodynamics ofgeneralbinary mixture, when
in collisions vanish. the interaction between like particles is much stronger than
In the case of a binary mixture, without chemical reac-that between different particles, and the two components are
hydrodynamically separated. In this case, we may ignore in
first approximation the interspecies collisions. Under this ap-
*Electronic address: roni@physics.technion.ac.il proximation, there are four additional collisional invariants
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(the momentum and energy densities of each one of the spencounters between two particles we use it here only for
cies, and, accordingly, there are four additional Lagrangeelastic collisions. The collisions between particles of the
multipliers in the local equilibrium distribution: there is now same species will be designatedsa#f-collisions(SC), while

a separatehydrodynamic velocity and kinetic temperature collisions between particles of different species will be des-
for each one of the species. In Sec. Il we apply our generalgnated asnter-collisions(IC).

procedure to a mixture of atomseutral specigsand ions We separate th8oltzmann collision operatoof Eq. (1)
(charged specigsvith significantly differing flow velocities, into
and find the contributions of the interactions between the two
gases to the hydrodynamic equations. We then observe that
interspecies elastic collisions lead to a relaxation of the sepa-
rate hydrodynamic velocities and temperatures to common
flow velocity and kinetic temperature. Motivated by this re- where the binary operatqf,, is expressed by

sult we suggest, in Sec. IV, a generalized version ofréie

laxation time approximatiofRTA) to the Boltzmann colli- . , , .

sion operator—Fi)rF: which the linearized collision term has aj'w[f”“fy]:f d3p1f d’p f d*pil'(p.pa—p".p1) 6%(p
minimal number of nonzero eigenvalues. In the intercollision
part of the new RTA model we introduce three parameters,
which are chosen to be consistent with the results of Sec. Ill,
so that they lead to the same hydrodynamic equations. We () w1\ £(0) ot ) ©)
then use the suggested RTA model to refine the results of X[F7(p) 7 (p) — (@ (Pl ()
Sec. lll. In Sec. V we consider the effect of three other cou- )

pling mechanisms—charge exchange, ionization, andi€r€P=m.v andp,=m,v, are the momenta of the incom-
recombination—and obtain interesting results for the contriig @ andy particles, ancp’=m,v" andp;=m,v" are the
butions of charge exchange to the flow equations. Finally, ifnomenta of the outgoing and y particles. When the inte-
Sec. VI we summarize our results. Our main results are thgrations over thes functions are performed,,, can be cast
expressions for the contribution of elastic collisions andinto the form

charge exchange to the hydrodynamic equations of sepa-

rately flowing, mixed neutral gas and charged gas in a par- jay[fa!fy]zj B30 1dQ 04 () V= V4| [ (V) F,(V])
tially ionized plasma. The effect of elastic intercollisions on

the flow becomes significant when a large flow separation is —f, (W f.(vp)] @)
developed between the components of the plasma. al Py T

i f
E a(v)

”:7:21’2 jay[fa!fy]r (2)

2 12 12
’ ’ p2 pl p p 1
1P Py 5( 2m, * 2m, 2m, 2m,

Here o,,(Q}) is the scattering cross section between a par-

Il. HYDRODYNAMICS OF BINARY ticle of type a and a particle of type/ with scattering angle
MIXTURE—PRINCIPLES Q. For brevity, we have omitted andt from the arguments
of fin Eq. (4).

In this section we present the principles of the derivation
of the hydrodynamic equations of a binary mixture, when th
different species cannot be described in termssifigle flow
velocity,and asingle temperatureWe start from the kinetic
equations for the distribution functiorfs,(r,v,t), of the «
species, where is the positiony is the velocity, and is the
time. We recall that the hydrodynamic quantities, density,
flow velocity, kinetic temperature, etc., are defined as veloc
ity moments off ,(r,v,t)—see the Appendix.

The equation of motion fof ,(r,v,t), i.e., theBoltzmann
kinetic equation, reads as

e We are concerned here only with a mixture of two fluids,
and write Eq.(1) for the « component as

D
afa(r,v,t)=Jaa[fa,fa]+ja,3[fa,fﬁ], (5)
wherea,8=1 or 2, andB# «. The first term on the right-
hand side of Eq(5) is the standard collision operator for a
gas of single species, while the second term represents the
effect of inter-collisions between the two species. Starting
from the kinetic equations, the hydrodynamics equations are
obtained by taking theelevant velocity moments Eq. (5),
i+v- i+ E i>f (r,v,t) i.e., the zeroth, the first, and the second. Namely, multiplying
gt ar - m, av) both sides of the kinetic equation byni,v, and m,v?/2,
respectively, and integrating over the velocfig®v produce
, (1)  the equations of mass, momentum, and energy conservation.
coll We notice that since only elastic collisions are under consid-
eration here, self-collisions conserve mass, momentum, and
whereD/Dt stands for the hydrodynamic derivative,, is  energy in each gas, and therefore the three moments of the
the mass of am— particle, andr, is the external and long self-collision term on the right hand side of E&) vanish.
range forcegsuch as electro-magnetic forgesting on fluid We generalize here the procedure which is used in the
a. The right hand side of Ed1) represents the influence of case of a single fluifi12], and seek an approximate solution
close range interactioricollisiony between the particles. for the distribution functionsg; andf,. We examine Eq(5)
While the term “collisions” may stand for various kinds of assuming that the system is collision dominated, and that the

D ¢ _
a a(ryvat)_

B Jd
= Efa(r,v,t)
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cross section for self-collision is far greater than that of thef{!), we return to Eq(5), substitute Eq(7), and obtain the
intercollisions. To estimate the role of the different terms ofmoment equations, i.e., the hydrodynamic equations for the
Eq. (5) we introduce for each component three characteristignixture.

time scales: 7, qo,—the scale of hydrodynamic flow,
T.o—the scale of self-collisions, and,;—the scale of in-
tercollisions, as follows:

D «
_fa%
Dt T, flow

fo fo
) jaa[fa!fa]wa! jaﬁ[fa!fﬁ]wzﬁ'
(6)
The main assumption for our mixture is thif,, is the domi-
nant term in the kinetic equation for thespecies, or that in

terms of the time scales we have,, <7, fon, and 7,,
<7,5. We therefore expand

fo=fO 4+ 7
where
fO | Taa_ |40 (Taa) (o) )
“ Ta,flow @« Tap @

e, fM<fO

First we remark that, as for a single species, in the case of
the binary mixturef(Y), the small correction t6”), contrib-
utes only to the stress tensor,

[Ha’(r!t)]ij :maf dsv[vi_ua,i(r!t)][vj_ua,j(rlt)]

x{FOr v,y + B (r,v, 1)}, (12)

and to the thermal energy flux vector,

J,(r,t) =%miJ d3u[v—u,(r,t)][v—ug(r,t)12F1(r,v,1).
(13

Here the indices$,j correspond to the three Cartesian vector
components. Notice that for symmetry reasons the dominant
part of the distribution functiorf®)(r,v,t) contributes only

to the diagonal elements of the stress ter(sbk,(r,t)];;) in

and we can use perturbation theory. In thegq.(12), and does not contribute to its off-diagonal elements,

SplifiF of the Chapman-Enskog method we also demand thaior to the thermal energy flux vector, E(L3). Then we
1 in Eq. (7) has no contribution to the zeroth, first, and observe that since the relevant moments of the first term,

second velocity moments df, .

Since the dominant term of E() is the first one on the
right-hand side, the zero order tefff?’ is the solution of the
equation

Tual 10, 10]=0. (9)

The solution to Eq.9) is simply the Maxwell-Boltzmann
local thermodynamic equilibriun{LTE) distribution func-
tion, that is,

312
fOr,v,t)= n“(r't)[wﬁrt)}
_ 2
X ex;{ — —ma[za lzc;(tr)’t)] } (10)

Heren,(r,t), u,(r,t), and 8,(r,t) are the threehydrody-
namics variablesof the @ component of the mixture: the

local number density, average flow velocity, and kinetic tem-

Taol fo:fal, on the right-hand side of Ed5) vanish, the
only direct contributions to the hydrodynamics of the mix-
ture, due to the elastic collisions, come from the moments of
Japlfa fgl, the intercollision term. In the sense of our per-
turbation scheme, we end up with the following contribu-
tions of the moments:

MW= f AP G (V) T £, F9)], (14)

where

GO =1, GBwv)=m,y, GPwv)=mp?2.

(15

Ill. CALCULATION OF THE INTERCOLLISION
MOMENTS

We now wish to calculate the contribution of the intercol-

perature, respectivelfsee the Appendix for the proper defi- lisions to the hydrodynamic equations of a gas in a binary

nitions). Having thef®) expressed in terms af,,u,, and
0, , we substitute Eq(7) into Eq.(5) and find, to first order
in the small dimensionless expansion
(Twa! T fiow) @D (oo ! Tap), an equation forf ()

a Vo

D
oV = T [ 10 0]+ T [ 10 £5]
+ Topl £ 1501, (11)

These are implicit equations fdi®, and f$", stated in

mixture, e.g., the moments in Eqd.4),(15). We focus on a
mixture of atoms and ions in a plasma, in which the atomic

parametergnasses of the two components are practically equal. The

effect of intercollisions is expected to be especially signifi-
cant in cases of large differences between the flow velocities
and the kinetic temperatures of the two components. Since
the case of similafor identica) flow velocities with different
temperatures was widely treated in the p@sy., magneto-
hydrodynamics in plasmaswve concentrate here on the case
of large relative flow differences between the two gases. We
assume that the velocity distributions of the two components

terms of the six hydrodynamics variables, and the differentialre narrow and separated from each other, i.e., we introduce

cross sections. In principle, once they are solved‘fb)rand

the small parameters:
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T

Vg

=2 <
T T o

wherevl= \J246,/mis the thermal velocity in component,
which represents also the width of its velocity distribution. In
other words, we focus on the case of a large drift between the
two components, which is physically meaningful in a variety
of laboratory and natural plasmas. We will further assume
that the thermal velocity of each of the two gases is small
compared also to the other characteristic scales of the sys-
tem, in velocity space.

We now use these assumptions to calculate the moments
in Egs.(14),(15). Examining Eq.(4) we see that each of the .
velocity moments in Eq(14) is composed of two terms, 0 2 4
M) (the term with the primes in th&®’s) andM{'}. The |v-ug [v]
second term,

1/Totﬁ( v) [ nBZaB ]

FIG. 1. The dependence of/s(v) upon|v—ug|. 1/7,4(V) is
) _ 3 ~(n) 3 given in units ofngX 5 while [v—ug| is in units ofv;. Full thin
My2=— | d*vG,7(v) | d UldQUuB(Q)W line: the exact function of Eq20). Dashed line: the approximated
function of Eq.(23). Thick line: the relative differenc&).
Vit D), (17)

'~ 0, I I 1 1
can be cast into the form much (~25%) inside a sphere of radlu% aroundug in

velocity space. We will get back to this point later on.
fO(v) We now return to Eq(17) and observe that sindé”(v)
Tap(V)’ (18) is narrow, we may regard,z(v) as approximately constant
“ under the integration, and replace it bys(u,). Hence

M= — f d*u G (v)
where
1

I\/I(n)= _
2 Taﬁ(ua)

@,

1
Taﬁ(v)

J A3 G (V) f (v), (24)

Ef d3v1f dQo,5(Q)|V=vy|fD(vy). (19

and MEZ”)Z is proportional to the regular moments bf(v)
(see the Appendix

We turn now to the first term in Eqg14) M{"). Using
1 T Po(=%) = Dy(X) Eqg. (3), adapting it to the case of equal atomic masses, we
TosV) —_—, (200 may write it as

=n52aﬁvﬁ
\(/:vohl?r:teezravﬁvi'ltfm the total cross section of an intercollision en- MExn?L:f dng' d3vlf d3v’J (v, V) (v

The physical meaning of ,z(v) will be discussed later. We
first observe that this can be written as

X

X=|v—ugl/vj, (22) V=V = V) 8w tvi-v'?—v']
and xGP W) Q). (25)

= (7, , Since the functions?(v') and f{")(v;) are assumed to be
(DZ(X)EJX dx fodx erfe(x"). (22 separated, and narrow with rgspect to the characteristic
scales of changes in velocity space, we can first carry the
To better understand the dependencergf(v) onv we ap-  integration oven’ andv; to find that
proximate it as

1 Iv—uy| M(E{")ﬁnanﬁf d3vJ d3 10 (V,vy— U, Ug) 3(V+Vi— U,
_ B T
T—(V)—nBEaﬁ 0.12+exp — T vﬁ-l- V—Ug , ,
“k B 23 —up) 8(v?+vi-uZ—-u3)GP(v). (26)

Figure 1 illustrates the functional dependence of,3(v) The intercollisions scattering potential can be approximated
uponv. The figure shows the exact expression, the approxiUsing a hard spheres modegbilliard balls™). Under this
mate one, and the relative difference between them. We n@iPproximation

tice that the approximation of E¢R3) is indeed within about

one percent of Eq:20). Note that 1#,4(v) does not change I'(v,vi—U,,ug) =T(vy,v—u,,Ug) (27)
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(this is easily seen using geometrical considerations for col- IV. RELAXATION TIME APPROXIMATION
lisions between two identical hard sphereand we may AND FIRST ORDER CORRECTIONS

i )
therefore replace the last expression ngl by The results obtained in the previous section, EG8)—

(32), indicate that the effect of the intercollisions is to bring

ng)lznanﬁf d3vf d3vlr(v,vlﬂua,uﬁ)a\g(v+v1—ua the dynamically separated two components of the binary
mixture to relax towards a common flow velocity and kinetic
(n) (n) temperature. This suggests that the intercollisions part of the
2 Ga (V)+Gﬁ (Vl)

(28 Boltzmann relaxation term can be accounted for using the
method of relaxation time approximation. This method is a
useful tool in plasmas, and can give us here a better insight
to the results of the previous section, and even help in modi-

ng)(ua)JrG(Bn)(uB) fying them to include first order corrections i, 7.

First let us recall the use of the relaxation time approxi-

—Up) d(v2+vi—ui—uj) 5 ,

and obtain

M Evn,?l.: nanﬁzaﬁ| Uy~ uﬁ|

2 mation in the case of one-component fluid, say where
n, G(an)(ua)JrG(ﬁn)(uﬁ) only self-collisions are under considerations. In iegle-
~ 5 . (29 parameterrelaxation time approximation the right hand side
Tap(Ua) of Eq. (1), e.g., the SC collision operator, is replaced by
Combining Eqgs.(24),(29) we finally find, for the zero mo- f(rvt)—fo(r,v,t)
ment, Jeal farfol = —"——. (33)
M=o, 30
“ (30 Here the effect of self-collisions is modeled as a relaxation
for the first moment, process, wheré,, is approaching the LTE distribution over a
time scaler,, . The stress tensdl, and thermal energy flux
@ U,—Ug vectorJ, are then being calculated using perturbation theory
M7= —mnng3 u,—ug| 2 for f,, aroundf® [12]. We first attempt to motivate E¢33),
using the Boltzmann-collision operator of Eg) for a single
_ Uy—Ug species.
~ = MYp(Ua) 2 (31) Again we notice that the expression gy, in Eq. (4) is
divided into two parts. The second one, namely,
and for the second moment,
2o 3 T A== [ Posd00, (Ol W ).
M= —voplun)| M= +5 04, (32) (34)

where v,g(u,)=n,/7,5(U,) is the number of intercolli- can be clearly expressed as

sions betweerr and 8 per unit time per unit volume. Note f (V)
that for very smally's v,5(U,)=~v.(Ug)(=v), as ex- TN, f]=— =, (35)
pected. Taa(V)

These momentsy(, M andM(®, are the contribu-
tions due to the “weak” inter-collisions to the flow equations
of gas « in a mixture in the present model. These terms
describe the exchange of mass, momentum, and erfexgy

just by integrating ovev,. Since within the integral over;
the distribution functionf ,(v;) can be approximated by
f©(v,), we get for the velocity dependent relaxation time

spectively between the two mixed gases, due to intercolli- 1
sions. We expect that intercollisions do not change the local :j d3v 1onw(Q)|v—v1|fg°)(v1), (36
individual mass of each component, nor the lot@thl mo- Taa(V)

mentum and energy of the mixture. The conservation of eacp .. . - - -
component’s mass is indeed demonstrated by(E@), i.e., {M"Ch 's equivalent to Eq.19). The first term of Eq(4),

M{M=0. The conservation of total local momentum is evi-

dent using Eq(31), sinceM?+M&)=0. In contrast, the jgl(z[faja]:f A0 1dQ 0o (Q)V—va|Fo (V) 4(v1),

total local energy is not exactly conserved, singg> (37)
+MP)=—30v(6,+65). This is not surprising, since we _ . _ N

have practically neglected the individual kinetic tempera-n€eds more attention. Since the primed velocities are the
tures of the two components in the mixture. In the sense oproducts of the binary collisions we again can replace the
the approximation given by Eq16), the error in the total distribution functions by their zero order expressions, f.g.,
local energy conservation is of first order in thés of Eq.  is replaced byf'?’. Furthermore, the conservation laws al-
(16). In the next section we will obtain first order corrections low the replacemenf®(v')fO(v})=f(v)f%(v,) and

to Egs.(30—(32). Eq. (37) can be written as
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N 0 0 The parameters df .5 in Eq. (39), U,z and® 4, are func-
quf[fa,fa]:J 4301000, (Q)[v—v4 | F (V) F O (vy) tions of the individual flow parameters of both components
of the mixture. The velocity moments of E@2) determine
fO(v) the intercollisions contributions to the flow equations in the
= Tou(V) RTA approximation. We compare these contributions to those
obtained at the end of the last section, E@)—(32). It is
with the samer,,(v) of Eq. (36), and thus easy to check that choosing

fo(r,v,t)—f2(r,v,t)

Taa(v)

Uy (r, ) +ug(r,t)

jaa[favfa]%_ (38) Uaﬁ(r!t):f, (43)

This justifies Eq.(33), however, with a velocity-dependent m )

time scale,r,,(v). Figure 1 shows the dependence of this 0 4p(r,1)= 1—2[ua(r,t)—ulg(r,t)] , (44)
time scale orv (simply change the subscripisto « in the

figure caption and axjslt is easy to see that,,(v) changes and

very little (by about a quarterin a sphere of radiusul

aroundu, . In velocity space most of the particles of the gas

are located inside this sphere, and therefore using a constant ?,3 = nBEaﬁ|Ua_ UB|’ (45)
relaxation time scale seems fairly appropriate.

We now wish to extend the method of relaxation timeyields the desired result. Notice that the expression®fgs
approximation(RTA) to the case of a binary gas mixture, in and r,, are independent of the individual kinetic tempera-
a manner that would result similar contributions, due to in-tures of the two gases, and 0. This is not surprising since
tercollisions, to the flow equations, as were obtained in thQJaB(r,t), 0 ,5(r,t), and 7,4(r,t) were chosen to be appli-
previous section. We expect the relaxation term in 83),  cable in the limit wherey,, and 7 are very small, Eq(16),
due to the intercollisions, to have a form analogous to that ofyhich assumes that the individual kinetic temperatures of the
Eq.(2), i.e., gases are small, in some sense. Equat{8as—(32) include

only zero order terms inp; and 7,, and correspondingly
T ]H_fa(r,v.t)—Faﬁ(r’Vi) (39 alS0Ua(r,0), O©,4(r,1), and 7,4(1,t) of Egs. (43—(45)
apLias!'p ’ . . .
Tap We now wish to use the RTA scheme to estimate the first
order corrections ing, and 74 to the parameter® ,4(r,t)
where and 7,4(r,t).
m 32 () The corrections to® ,z. We have stated before that
Faﬂ(r,v,t)=na(r,t){—“} M which describes the exchange of energy between the
270 (1) two gases due to intercollisions, conserves the total local

ma[v_ Uaﬁ(rit)]z
XER T T8,

energy only to zero order iy, and 5. We now suggest a

}, (40) first order correction to the common kinetic temperature
0,5. Wiiting 0 ,5—07,=0,,+A0, where AO/O 4

and ~ a1, We examine the energy momerftd®v 3m,v?) of

Eq. (42). The energy continuity equation is written as

UaB:UBa’ @aﬁ=®ﬁa (41) P
Here the net effect of intercollisions is now assumed to make 7; (€a) ¥V (€Ua) +V - Jo+ V- (Il Uy) = NaFy- Uy
f, relax towards a “common” LTE statg ,; on a time scale
of 7,5 [14]. The parameters of the common LTEverage 1
velocity and width of the distributionare different from the T
“self-LTE” parameters offg. Equation(39) demands that
the first and second velocity momentsef,; (the flow ve-
locity and kinetic _tempergture, rgsfpectlv)elyre equal to In order to have total local energy of the mixture conserved,
those ofF 4, (to which the intercollisions forcé, to relax.

s . B, we demand that the sum of the right hand sides of these
This expresses the tendency of the intercollisions to eq”at@quations over the two fluids should vanish. i.e.

the flow velocity and kinetic temperature of the two species..

> o +1 u
Zna af 2mana

2 1 2
ap” Ena6a+ Emanaua

Taﬁ
(46)

Using Egs.(1),(2),(33),(39) we get the equations of mo- 1 3 1
tion for the distribution functions of two mixed gases in the — —na®23+ —mnauiﬁ— (—na0a+ —mnauf,)
RTA scheme: Tapl2 2 2 2
0 13 * 1 2 1 2
R o fa(r,v,t)—"f (r,v,t) B fo(r,v,t) —F o5(r,v,1) +7_— §n3®“ﬁ+ Emnﬁuaﬁ— En395+ Emnﬁuﬁ
Dt ¢ T, Top ' pe
(42) =0. (47)
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Since, by Eq.(41), ©7,=0%,, U,z=Ug, and, by Eq.
(45),_na/raﬁznﬁ/rﬁa, and s_ubstitutinga’;/g=®aﬁ+A®,
we find that the last expression reduces into

6(0+A0)+2mUZ—3(6,+ 05) —m(u’+uz)=0,
(48)

which is the desired equation f&®. Substituting® andU
from Eqgs.(43),(44) we find thatA® = (6,+ 6)/2, which is
indeed a first order correction # .4, in 7, and 74. In

PHYSICAL REVIEW E66, 066405 (2002

Vaﬁ:na/TaB:nanﬁzaﬁ[|ua_uB| +011UI,+ U;)](SZ)

as the number of collisions of particle of specieswith
particles of specieg, per unit time per unit volume, we get
Vap= Vpe, AS EXpected.

Before we use the suggested kinetic E@®)-(51) to de-
rive the resulting moments equations, we like to offer a
qualitative description of the expected dynamics of the sys-
tem. We examine the case for which the two fluids in the

summary the common kinetic temperature up to first order injxture have separate flow velocities and kinetic tempera-

7, and 7z is

m 5, Oatbp
G)a[,(r,t)z1—2[ua(r,t)—uﬁ(r,t)]+ 5

(49)

(i) The corrections tor,s. Equation(23) gives an ap-

tures, that is when the coupling effect of interspecies colli-
sions is weaker then the effect of self-collisions. We then
expect to haver;;, 700<< 715,71, and thus expect the distri-
bution functionsf,,f, to first relax on the short time scales,
T11,T22, Fespectively, to LTE forms, like that of Eq10),
with different parameters of flow velocityu{+u,) and ki-

proximate expression for the velocity-dependent relaxatioretic temperature 6, # 6,). However, on the long time
time 7,4(V). It represents the effect of many intercollisions scales;ry,, 70, respectively, we expect the characteristic pa-

encounters on a particle of component having a specific
velocity v. It is reasonable to suggest that twnstantrelax-
ation time 7,z should be the average af,5(v) overall the
particles of componeni:

1
Taﬁ(rrt)

1
:f d3of (rt) ——— (50)

Taﬁ’(r 1V1t) ’

Again, we can use Ed7) to replacef, by fgo) in the inte-
gration. We now use the approximate expression,g{v) in
Eq. (23 to to getr,z, in the limit of Eq. (16). Neglecting
second order effect im, and »; we get that

1
T—=nB2aB[|ua—uB|+0.1Zvl+v;)]. (52)

B

Indeed we see that this expression foy; is a sum of the
zero order term, which was already obtained in &&), and
a first order correction im, and 7.

To summarize, we have developed a simple RTA relax-

ation term, given by Eqgs(42), for the dynamics of two,

rameters of both LTE distributionsy; ,6; andus,, 8,, to be-
comeU, 0, respectivelywhere we now omit the indices 12
from the commonvelocity and kinetic temperature

We are now ready to summarize our analysis of the binary
mixture. Using the results for the relaxation terms, Egs.
(39—(51), and taking the moments of the kinetic equations
for f, andf, we write down the set of hydrodynamic flow
equations for the mixture as follows.

(1) Conservation of mass,

0
—m,n,+V-(myn,u,)=S,

at (53

whereS“# on the right-hand side represents the sources of
the masses. Since the intercollision encounters do not in-
volve mass flux or exchange between the two fluids, we get

S¥=0. (54)

(2) Conservation of momentum,

collisional coupled mixed gases. We have also calculated the

appropriate parameters, given by E¢3),(49),(51), in this

—(m,n,u,)+V-u,(m,n,u,)+V-I,—n,F,=FP

RTA scheme. This, in turn, reproduces the proper hydrody-

namic equations for a binary mixture, in the important case (59
where a significant flow velocity difference is maintained B
between the two components of the fldice., with no sig- Wherle, here 7% corresponds to momentum sources, and
nificant overlap between the two distribution functipns equais

The RTA approach interprets the effect of collisions as a _
combination of two different relaxation processés:Colli- ffé'6=mavaﬁ(ua2 Ug) . (56)

sions between the same patrticles, e.g., of fluidvhich tend
to relax this fluid into its own LTE state on a time scalg, .
This is the faster of the two processés) Intercollisions
between particles of fluide and3, which tend to relax each
fluid from its own LTE towards a common LTE, on a time  J o
scale of7,s. In this common LTE the two fluids have the Eea”LV’uaéa+v"]a+v'(Ha'ua)_naFaua:H %

same flow velocity and kinetic temperature. Note that Eq. (57)
(51) yields 7,5# 74, . Actually we see that th@ocal) “rate”

of relaxation of each gas is proportional to the local densitywhere nowH *? takes care of the energy density sources,
of the other gas. Defining and is

(3) Conservation of energy,
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3 1 discussed in previous sections, the third term stands for
HeP=vag 20570+ Ema(Uz—Ui) ionization-recombination, and the forth term stands for
charge exchange.
m, 5 Before we continue to investigate the roles of charge ex-
+vapg (Ug—Up)™. (58)  change, ionization and recombination on the flow equations
for plasmas, let us re-express the source terms due to atom-

Note thatv,; from Egs.(56),(58) is explicitly given above, ion intercollisions. In the present notations we have
in Eq. (52).

This is our general result for the flow equations of a mix- a p—a
ture of two coupled gases. The collisional coupling between a ai ai
the two components of the mixture is expressed by the rate Taar Tapr Vap™ Tser Ticr Pieo
of change of momentum?;’i‘éﬁ of Eq. (56), and by the energy A . A
rate of changeH:* of Eq. (58). F*¥ represents the colli- S, Fb meP- S Ry, HY

sional drag which fluid3 exerts on fluida. H{';B describes

the energy exchange between the two fluids due to the intefSwapa andi to get the expressions in the ions flow equa-

action between them: the first term indicates the tendency dfons). For example, the expression in E§6), for the effec-

the two components to reach a common temperature; thﬁve drag exerted on the atoms by the ions, is now written as

second term describes the relaxation of the kinetic energy to

the center-of-mass kinetic energy of both fluids; and the third P I— Ua— U

term comes from dissipation of kinetic energy into thermal ic 2

energy. We can further simplify the expression Mﬁﬁ by

substituting the expression faf,;, Eq. (43): We start with the rate of change of the distribution func-
tions due to ionization and recombinati¢iiR). In analogy

(61)

3 1 with Eqg. (39) we take, as was also suggested by CaBip
Hl=vag 20057 0a)+ Zma(ufa_ W) (59  and Hazeltineet al. [15],
d fa fi
V. IONIZATION, RECOMBINATION, Efa =T + o
AND CHARGE EXCHANGE r on. frec.
Up to now our discussion was valid fany mixture of ) f, f,
two collisional coupled gases, with equal or very nearly (Efi) =+ P (62
equal atomic masses, when a difference in both flow veloci- ir ion.“rec.

ties and kinetic temperatures is maintained. In the case of ) o _

partially ionized plasma, we have dealt only with one of theWWhere iy, is the mean “lifetime” of an atom in the plasma
four coupling mechanism between the neutral-species gd2efore it is ionized, and . is the mean lifetime of an ion
(atoms and the charged-species gémns and electronsof ~ Pefore a recombination with an electron. Examining Egs.
which this “mixture” consists13]. While intercollisionsex- (62 we clearly recognize that the terms describing ionization
changemomentum and energy between these two gases, trhd recombination processes introduce exchange of mass,
three additional coupling mechanisms—ionization, recombimomentum, and energy between the atoms and the ions,
nation, and charge exchange—exchange aiassbetween though conservation .of the total values 0}‘ these quantities in
the atoms and the ions. We now suggest to investigate the$de plasma is maintained by these equations. Taking the mo-
additional coupling mechanisms, using a RTA scheme, simiMents of Eqs(62) additional terms should be added to Egs.
lar to that of the elastic intercollisions. To carry on this pro- (53),(55),(57). Defining the ionization and recombination
gram we reexamine Eq$42) in the presence of additional 'at€S 8%ion =Na/Tion. AN v1ec=N;/7rec We get that the rate
coupling mechanisms between the species. We shall use ti9 mass transfer from the ions to the atoms, due to the IR
indicesa andi for atoms and ions, respectively. We return to PrOCESSES, 1S

Eq. (1) and recall that the influence of the close-range inter- .

actions between the particles, has been denoted by Si'= = VionMa+ ViecMy; (63
(0f1dt)cou, and we write it now as

gt @) ot
coll
and, finally, the energy transfer rate from the ions to the

Here the first term on the right-hand side stands for the in&0ms, by IR, is

fluence of self-collisiongin fact all close-range interactions

inside each component in the mixture, the second term rep- - — Em W2+ v lm u2 (65)
resents the influence of interspecies collisions, which were ir lon.p Hata & Trec.p At

the effective drag force exerted by the ions on the atoms is

+af af +
ot r?t"‘ir

sC

+

a

1%
ﬁfa) cx- f?I =~ VionMalat VrecMallj (64)

(60)

ic
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in the atoms “energy” equation. The same terms now appear

also in the ions-gas mass, momentum and energy equations, Mi(n)’CX:J dSUG(n)(V)J oo [V=vi))lv
however, with opposite signs. Note that the mass transferred

in a single ionization or recombination event is alwarys. =vq|[fi(v) fa(V) = Fi(W) fa(vi)], (68)

We then turn to the last term of E¢60), and study the ) ] ) )
effect of charge exchange on the source terms of Eqé_/yhere_G(”)(v) is defined as in Eq(15). The last expression
(53),(55),(57). Using Egs(2),(4) we find the Boltzmann col- 1S asily cast into the symmetrical form
lision operator for charge exchange reactions as GM(v)— GM(v,)

e[ s, ol

2
J
(Eﬁ)cxzj A0 1o ex([V=vi ) V=4 [ fi (V1) fa(V) —vy|[fi(v) fa(v) — Fi (V) Fa(vy) ] (69)
—fi(V)fa(vy)] (66) The case of large relative flow is expressed by Ef),

which means that the distribution functions of the atoms and
the ions are narrow and separated. Under such conditions,
(swapa andi to get the expression in the atoms kinetic the value of o(|v—Vv;|)—for example, as given in Eq.
equation. Note that in a charge exchange reactio)v;  (67)—is almost constant under the velocity integrations in
—Vy,v, and therefore we have used,vi=v;,v to get the  Eq. (69). Similarly, also the other variables of tfié&s inside
last expression. these velocity moments are almost fixed. Therefore, to zero
The cross section for a charge exchange reaction desrder in the's of Eq. (16), the velocity moments of the
creases with increasing values of the impact velddi;17). charge exchange collision integral in the ions kinetic equa-
The general approach to incorporate charge exchange pr@en are
cesses in the kinetic level is to assume thgf(|[v—v4|)-|v

—v;| varies slowly in velocity space, and to neglect this M=, (70
variation[2,3,15. This conjecture simplifies the Boltzmann (2).0x
collision operator for the charge exchange and allows an Mi?™= —mpe,(Ui—Uy), (72)

easy derivation of its velocity moments, e.g., its contribution

to the flow equations. M@)o uf—u; 79
The velocity dependence ef., on [v—v;| is not, how- P T My 2 (72
ever, an inverse-proportional rule. The well known approxi-
mate relation for aymmetric resonantharge exchangd g, = where
Vex=NiNg| Ui — Ug| o] Ui — Uy|) (73

Voo [v=vi)=—kiIn([v=vy|) + ks, (67)

[swap the indices andi to get the equivalent of Eq§70)—
(73) for the atoms flow equatiomsHere v, is the rate of
atom-ion charge exchange reactions in a unit volume.

By now we have obtained zero order expressigims
na,m;) for the contribution of charge exchange to the flow
. : X o equations. From our treatment in elastic collisions we re-
mixture of atoms and ionga partially ionized plasmathe o her that first order corrections for the velocity moments
range of impact velocities is not small enough g(]V  \ere obtained using a relaxation time approximatieae

—V1[)|[v—Vy| to be constant. Atoms and ions coexist togetherg IV). To get first order corrections to EqS.0)—~(73) we
in a plasma up to temperatures of 2—-3 eV s. Accordmglysuggest the following RTA model:

even without relative flow between the two species(|v

—vy|)|[v—vy| changes a lot. For example, in Ar plasma 9 fo—Nof,

oe(|V—V4]) - [v—Vv4| changes by 100% or so, in the range of (Efa>

1-3 eV. When a significant relative flow is also considered, cx

the changes may be more than an order of magnitude. We

conclude that the traditional approach to deal with charge J o fimNafa

exchange is not adequate for the case of large relative flow Efi -

between the atoms and the ions, in which we are interested. o
We want to find the contribution of charge exchange re-with

actions to the flow equations of mixed atoms and ions, with- _ _

out assuming the inverse-proportional law of cross section. 18 =N Ve,  To=Nilvey. (75)

The formalism that we have developed in the previous sec-

tions allows it, especially when a large relative flow is de- & is the average lifetime of an atom before it undergoes a

veloped. As in Eqs(14),(15), the contributions of charge charge exchange reaction and becomes an ion, wifjlés

exchange to the flow equations are the following velocitythe average lifetime of an ion before it undergoes a reaction

moments of the collision operator: and transforms to be an atom, angl, A\, are assumed to be

was theoretically suggested previou$ly6], and confirmed
in experimentg17]. It is therefore clear that neglecting the
variation of o (|[v—v4|)|v—V;| is appropriate only for a
very small range of impact velocitiésr energies Alas, in a

ai !

TCX

ia ! (74)

TCX

066405-9



R. A. NEMIROVSKY, D. R. FREDKIN, AND A. RON PHYSICAL REVIEW E66, 066405 (2002

independendf velocity space. The meaning of thés will by the charge exchange coupling. We observe that they do
shortly be revealed. First we want to give an intuitive inter-not differ only by their different ratesy,. and v, but also
pretation to Eq(74), and compare it with the RTA descrip- by a factor of 1/2. This means thaachcharge exchange
tion of the elastic intercollisions in Eq$39)—(41). Back reaction is twice “stronger” than the equivalent elastic inter-
there our interpretation was that intercollisions encounter beeollision. The result is intriguing, since it corresponds to a
tween the two gases relax both of them into a joint state, ifmicroscopicresult. A charge exchange reaction between an
which they have the common flow velocity and kinetic tem-atom and an ion is anald@n its result$ to ahead-onelastic
perature. Our interpretation for charge exchange, however, istercollision. The momentum which is transferred in a
naturally different. Equatioti74) mean that the net effect of head-oncollision between two particles of the same mass,
many charge exchange reactions is to bring the velocity dewith definite velocities, is exactly twice the momentum
pendence of , directly to the that off; (and vice versa This  transferred in araverageelastic collision between two par-

is quite reasonable since an atom-ion charge exchange rede:les having the same definite velocities.

tion swap the charge of the two particles, without any change To get the contribution of charge exchange to the energy
of their velocity or mass. A large number of charge exchangdransfer between the two mixed components in the plasma
reactions therefore will make the atoms behave like ions irwe apply the second order velocity moment on E@4).
velocity space(and vice versp while they conserve mass The energy transferred from the ions to the atoms is

and particle density of each fluid. Note also that, exactly as
the result for elastic intercollisions, the relaxation times of
atoms and ions due to charge exchange are not equal, but
rather related to each other like their number ratios.

Since locally the total rate of changes, due to charge exThis expression includes the desired first order corrections to
change, is conserved, i.egf(,/dt) o+ (9f; /9t) x=0, we get  our previous second order velocity moment, EcR). Note
from Eqs.(74) that the contribution of charge exchange to the flow equa-

tions has the same expression as that of elastic intercolli-
1 Ay 1 A\ sions, Eq(59). They only differ in their rates, and, again, by
fa| m——5 | tfi| s ——=|=0: (76)  the factor of 2.
ox  Tox ox  Tex Finally, we want to suggest an intuitive first order correc-
In order for this to hold for allf, and f;, the bracketed tion to v.,. The expression for the rate of charge exchange in

expressions in this equation should vanish. We therefore corzd- (73) depends uporiu, —uj[, and is independent of the
clude that thermal velocities of the two components. We suggest that

the first order correction should be something like

a 1 2 2 3
HC)(: — Vey Em(ua— u; )+ E( 0.— 0,)|. (81

72 73 1 T,T T,.T
Aai:%i )\ia:% (therefore)\ai=—>, (77 Vex~ MiNa(|Ui = Ua| + v+ v)) 0 v + o7 + Ui —Ug)),
Tex Tex Nia (82
or, using Eq.(75), similar to the case of elastic intercollisions.
Ng n;
A==, == (78) VI. DISCUSSION
n; Ny

In summary, we have derived the hydrodynamic equations
We see that tha’s are practically weight factors which con- of motion for a partially ionized plasma, when the charged
serve the particléand masgdensity during charge exchange component, and the neutral component, have different flow
reactions ireachfluid. Actually, it is easily seen that E§r8)  velocities and different temperatures. We have started by pre-
also secures conservation total momentum and energy of senting a general procedure, in the kinetic level, to treat the
the mixture. For example, applying the first velocity momenthydrodynamics of a gas in a general binary mixture, when

on Egs.(74) and using Eq(78) we get the interaction between particles of the same species is much
stronger than that between particles of different species. This
mang(U,—Uu;)  mgn(u;—uy,) procedure was used to derive the interspecies interaction

- Tg)i( - Tice)l( =0. (79 terms in the flow equations of two mixed gases, of equal

atomic masses, with a large difference between their flow

The contribution of charge exchange to the drag exertedelocities. These interaction terms were later refined, by in-

by the ions on the atoms is simplgompare this result with troducing a generalized version of the standard relaxation
Eq. (61)] time approximation. The extended relaxation time approxi-

. mation was then used to consider various processes of en-
Fo=—Mmug(Uy— ), (80)  counters between the two species, and to obtain the mo-
ments’ equations for each of them. The following processes
while exactly the opposite force exerted by the atoms on thef interactions were studied: self-collisions, interspecies col-
ions. At this point it is interesting to discuss the differencelisions, ionization, recombination, and charge exchange. The
between the drag forcéZ; of Eq. (61), which is due to the hydrodynamic equations are summarized by the three con-
intercollisions coupling, and, of Eq. (80), which is caused servation equations for the mass, E§3), the momentum,
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Eq. (55), and the energy, E¢57), for ions and atoms, where is based on the assumption that the effect of self-collisions is
the Greek indices are replaced ibfpr ions, anda for atoms.  much stronger than that of the intercollisions, or as we have
Our results are contained in the source terms of these equexpressed it in Sec. ll75(V), 7 (V)<7h, 7. Now we
tions. This is outlined as follows: have explicit expressions for these time scateg(v) stands

(i) The mass equation source is only due to the ionizatioffor the implicit 72, while Tap OF Tap(Ug) for r{ii , etc. When
and recombination processes. The rate of mass transfer frofle compare the two relaxation times, as expressed by
the ions to the atoms is

SaiISﬁi, (83 Tgca n; zai viT+|ua—ui|
Tal na Eaa UT ’
which is given by Eq(63). The mass source term for the °
ions is thens'@=— &2,

.. . . i T
(i) The momentum equation source is caused by all the is'cwﬂ E up + U=y (86
interspecies processes. The rate of momentum transfer from 720, 35 T ’
the ions to the atoms is '° '
pai— gai gai gai (84 We observe that to secure our basic assumptions in the case
IC Ir CcXx?

of large relative flow difference, the cross sections ratios
with the different drag forces given by Eq&1),(64),(80),  2ai/2aa andXi,/; must be much smaller than the small
respectively. An analogous momentum source term is obparametersy, and ;.
tained for the ions. Finally, we would like to suggest criteria to determine
(i) The energy equation source is also due to all thevhether the dynamics of a mixture of two gases should be
interspecies processes. The rate of energy transfer from tf@nsidered as a single fluid, or rather as two separate fluids.

ions to the atoms is We mention two cases in which individual flow equations
_ ) , ) should be used to each component:
HY=HE+H +HE, (85 (i) When an initial value problem is considered for two

mixed gases with different flow parameters this case, the
where the various energy sources are given by(&8), with  flow parameters of the two components, i.e., the flow veloc-
a replaced bya and B by i, Egs.(65) and (81). Again, an jty and kinetic temperature, relax towards common values,
analogous energy source term is obtained for the ions. g time scales? and 712 (or with cx subscripts for charge
(iv) Each of the above collision processes is characterizegxchange encountérsThe final common flow velocity and
by a single rate. These rates afg, vic, Vic, Vion.r Vrec, @Nd  kinetic temperature may be determined by considerations of
vex, representing the rates of intraspecies encounters, intefnomentum and energy conservation. We conclude that the
species encounters, ionization reactions, recombination reageparate fluids treatment is therefore crucial when consider-
tions, and charge exchange encounters, respectively. Theg time scales on the order @r shorter thanthe intercol-
strength of each coupling process is proportional to its chartisions or charge exchange relaxation times.
acteristic rate. These rates may be either calculated using a (ji) When there is an appreciable difference in the action
model for the system, or established phenomenologically byt external forces on the two gas@is situation may occur
comparing to experiment. in partially ionized plasmas: when significant electromag-
We have derived explicit expressions for the rates of elasnetic forces are present there is a major difference between
tic collisions and charge exchange reactions. We would NOVE, and F; of Eq. (55). While F, is negligible in laboratory
like to relate to some consequences of these expressions. plasmas, or is just the force of gravitation in astrophysical
(i) We have already pointed out that, at the level of thepjasmasF, also includes the electromagnetic fordeg E
flow equations, the effects of elastic intercollisions andyxB/c)]. The charge species is then driven differently
charge exchange reactions differ only in their rates. Thesghan the neutral one, and a relative drift develops. We may
rates are given in Eq52) for elastic intercollisions and in  consider a quasiequilibrium between the different forces act-
Eq. (82 for charge exchange. Comparing the two rates Weng on each fluid, in which a steady drift is established. A
notice that they differ only in the cross section of a singlesteady relative drift means that the accelerations of the two
encounter, which is known to be generally bigger for charge;omponents, due to their responses to the different external
exchange. However, the cross section of intercollisions is elds, are equal. Using E¢55) with Egs.(61),(64),(80) and

constant to good approximation—and is of the order ofgqgs. (52),(82) we may find an equation for the “steady”
m(2r,)? in the hard spheres picture—while that of the relative drift, AuS*®, in such a quasiequilibrium:
charge exchange cross section, i.e., ), decreases with e
increasing impact velocities. In cases of large relative flow, { _
a
n

2

tead
; vie(|A U
the charge exchange cross section may decrease to valuega yst*adm, M

similar to that of elastic intercollisions. _
(ii) The expressions for the intercollisions time scatés,

and 77, in Eq. (51), together with the expressions for +nivrecl]=|nani(Fi—Fa)—(naV'Hi—niV-Ha)

75(V), T5{V) (see Sec. IV, allow us to check the consistency

of our approximations. Remember that our whole description (87)

tead
ch(lAu;Saea )+ NaVion.

3
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with n=n,+n;. Equation(87) shows that the rates of the

various encounters and reactions, together with the local val- Ua(r.t)EU dovf (1, v,t) |/ny(r,b); (A2)
ues of the external forces, pressures, and densities of both

components, determine the magnitude\of**®, and there- (iii) kinetic energy density

fore whether the atom and the ions are “stuck” together, or
not. Using Eq.87) one can estimate the expected values of
the relative drift in a certain physical situation, and accord-
ingly decide whether to use a single-fluid flow equations or
the multiflow equations, which are investigated in the present

1
€,(r,t)= J d3v§mav2fa(r,v,t)

1 3
= —m,n,(r,t)u,(r,t)%+ Ena(r,t) 6,(r,t),

paper. 2

(A3)
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(A4)

APPENDIX . . L
Notice thate, is the sum of the flow kinetic energy and the

Consider a mixture of two fluids, which are described by“thermal” kinetic energy(the phrase “thermal” is used here
the distribution functiond ,(r,v,t), wherer is the position, in a general senge
v is the velocity is the time, andr is the species index. We

recall that the hydrodynamic quantitiésensity, flow veloc- (v) Stress tensor
ity, kinetic temperature, etc.are defined as velocity mo-
ments off ,(r,v,t). We define the following moments. [Ha(r,t)]ijzmaf d3v;—U,,(r,t)][v;
(i) Number density
— Uy, j(r, )], (r,v,1); (A5)
na(r,t)Ef d3of (1, v,1) (vi) thermal energy flux
. 1
and mass densityp,=m,- N, ; (A1) Ja(r,t)zzmij d3u[v—u,(r,t)][v—ug(r,t)]2f ,(r,v,1).
(ii) flow velocity; (AB)
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