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Hydrodynamic flow of ions and atoms in partially ionized plasmas
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We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized
component and the neutral components have different flow velocities and kinetic temperatures. Starting from
the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters
between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge ex-
change. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary
mixture, in particular when the components drift with respect to each other. This was applied to a partially
ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have
further suggested a generalized version of the relaxation time approximation and obtained the contributions of
the interspecies encounters to the transport equations.
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I. INTRODUCTION

Neutral atoms play an important role in the dynamics
partially ionized gases when electromagnetic forces
present. Since they are unaffected by these forces, the a
exert an effective drag on the ions and electrons, and m
even flow separately. The effect of neutral atoms was sho
to be significant in various laboratory plasmas, such
Z-pinchplasma@1# andtokamakplasma@2,3#. In nature, this
effect was shown to be dominant during processes of
formation in stellar gas clouds@4–7#. The hydrodynamics
equations of motion in the case of separate flow of neu
atoms is usually obtained by considering the plasma a
mixture of two interacting gaseous fluids, one consisting
ions and electrons~charged-species fluid!, and the other con-
sisting of neutral atoms~neutral-species fluid! @1,3,8#. The
interaction between the fluids is introducing additional ter
in the flow equations for each fluid. The present pape
concerned with the derivation of these contributions to
separate fluids equations of motion.

The hydrodynamics of a gas, or gas mixture, is norma
obtained by means of some variation of the Chapm
Enskog or Hilbert method@9–11#. The hydrodynamic limit
occurs when collisions dominate the transport equation.
essence of the procedure is that quantities conserved in
lisions are identified, and a local equilibrium distributio
function, for which the entropy production vanishes is ide
tified ~Boltzmann’sH theorem!. The distribution function is
expanded in a series whose initial term is the local equi
rium distribution function. To first order, the collision term
linearized around local equilibrium, and the streaming ter
in the transport equation contain only the local equilibriu
distribution function. The condition that the resulting line
integral equation be solvable is that the moments of
transport equation corresponding to the quantities conse
in collisions vanish.

In the case of a binary mixture, without chemical rea
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tions ~ionization and recombination in our case of ions a
neutral atoms@3#!, the quantities conserved in collisions a
the densities of the two particle species, thetotal momentum,
and thetotal energy. When the local equilibrium distributio
is constructed, Lagrange multipliers corresponding to the
tal momentum density and the total energy density app
and these are the hydrodynamic velocity and the kinetic te
perature.

Traditionally, binary gas mixtures were studied assum
the mixture is having a common single temperature for b
gases@9,10#, or common single flow velocity like in regula
magnetohydrodynamics~MHD!. During the last two decade
some attempts were made to study the separate flow of
tral species and charged species in tokamak edge pla
@2,3#, assuming that charge exchange reactions, ionizat
and recombination are far more frequent than elastic co
sions between the ions and the neutral atoms. In the pre
paper we consider the effect of elastic collisions, and sh
that it can compare to—and even dominate over—the ef
of charge exchange reactions. This occurs when the drift
tween the ions and the atoms is much larger than their t
mal velocities. The reason that elastic collisions between
oms and ions were previously neglected was that only m
flow velocity differences were considered, as is indeed
situation in tokamak edge plasma. There are, however, in
esting cases where a significant relative flow difference
established between the charged and the neutral compon
of the plasma. For example, we have previously studie
specific Z-pinch experiment, i.e., a capillary dischargeZ
pinch for soft-x-ray amplification, and found that the relati
velocity difference, which is being developed between
two species, exceeds their thermal velocities by~at least! an
order-of-magnitude@1#.

We start, in Sec. II, by introducing a general procedure
derive the hydrodynamics of ageneralbinary mixture, when
the interaction between like particles is much stronger th
that between different particles, and the two components
hydrodynamically separated. In this case, we may ignore
first approximation the interspecies collisions. Under this
proximation, there are four additional collisional invarian
©2002 The American Physical Society05-1
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~the momentum and energy densities of each one of the
cies!, and, accordingly, there are four additional Lagran
multipliers in the local equilibrium distribution: there is no
a separatehydrodynamic velocity and kinetic temperatu
for each one of the species. In Sec. III we apply our gen
procedure to a mixture of atoms~neutral species! and ions
~charged species! with significantly differing flow velocities,
and find the contributions of the interactions between the
gases to the hydrodynamic equations. We then observe
interspecies elastic collisions lead to a relaxation of the se
rate hydrodynamic velocities and temperatures to comm
flow velocity and kinetic temperature. Motivated by this r
sult we suggest, in Sec. IV, a generalized version of there-
laxation time approximation~RTA! to the Boltzmann colli-
sion operator—in which the linearized collision term has
minimal number of nonzero eigenvalues. In the intercollis
part of the new RTA model we introduce three paramete
which are chosen to be consistent with the results of Sec
so that they lead to the same hydrodynamic equations.
then use the suggested RTA model to refine the result
Sec. III. In Sec. V we consider the effect of three other co
pling mechanisms—charge exchange, ionization,
recombination—and obtain interesting results for the con
butions of charge exchange to the flow equations. Finally
Sec. VI we summarize our results. Our main results are
expressions for the contribution of elastic collisions a
charge exchange to the hydrodynamic equations of s
rately flowing, mixed neutral gas and charged gas in a p
tially ionized plasma. The effect of elastic intercollisions
the flow becomes significant when a large flow separatio
developed between the components of the plasma.

II. HYDRODYNAMICS OF BINARY
MIXTURE—PRINCIPLES

In this section we present the principles of the derivat
of the hydrodynamic equations of a binary mixture, when
different species cannot be described in terms of asingle flow
velocity,and asingle temperature. We start from the kinetic
equations for the distribution functionsf a(r ,v,t), of the a
species, wherer is the position,v is the velocity, andt is the
time. We recall that the hydrodynamic quantities, dens
flow velocity, kinetic temperature, etc., are defined as vel
ity moments off a(r ,v,t)—see the Appendix.

The equation of motion forf a(r ,v,t), i.e., theBoltzmann
kinetic equation, reads as

D

Dt
f a~r ,v,t !5S ]

]t
1v•

]

]r
1

Fa

ma
•

]

]vD f a~r ,v,t !

5F ]

]t
f a~r ,v,t !G

coll

, ~1!

whereD/Dt stands for the hydrodynamic derivative,ma is
the mass of ana2 particle, andFa is the external and long
range forces~such as electro-magnetic forces! acting on fluid
a. The right hand side of Eq.~1! represents the influence o
close range interaction~collisions! between the particles
While the term ‘‘collisions’’ may stand for various kinds o
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encounters between two particles we use it here only
elastic collisions. The collisions between particles of t
same species will be designated asself-collisions~SC!, while
collisions between particles of different species will be d
ignated asinter-collisions~IC!.

We separate theBoltzmann collision operatorof Eq. ~1!
into

F ]

]t
f a~v!G

coll

5 (
g51,2

Jag@ f a , f g#, ~2!

where the binary operatorJag is expressed by

Jag@ f a , f g#[E d3p1E d3p8E d3p18G~p,p1→p8,p18!d3~p

1p12p82p18!dS p2

2ma
1

p1
2

2mg
2

p82

2ma
2

p81
2

2mg
D

3@ f 1
(0)~p8! f 2

(0)~p18!2 f 1
(0)~p! f 2

(0)~p1!#. ~3!

HerepÄmav andp1Ämgv1 are the momenta of the incom
ing a andg particles, andp8Ämav8 andp18Ämgv8 are the
momenta of the outgoinga andg particles. When the inte-
grations over thed functions are performedJag can be cast
into the form

Jag@ f a , f g#[E d3v1dVsag~V!uv2v1u@ f a~v8! f g~v18!

2 f a~v! f g~v1!#. ~4!

Here sag(V) is the scattering cross section between a p
ticle of typea and a particle of typeg with scattering angle
V. For brevity, we have omittedr and t from the arguments
of f in Eq. ~4!.

We are concerned here only with a mixture of two fluid
and write Eq.~1! for the a component as

D

Dt
f a~r ,v,t !5Jaa@ f a , f a#1Jab@ f a , f b#, ~5!

wherea,b51 or 2, andb5” a. The first term on the right-
hand side of Eq.~5! is the standard collision operator for
gas of single species, while the second term represents
effect of inter-collisions between the two species. Start
from the kinetic equations, the hydrodynamics equations
obtained by taking therelevant velocity momentsof Eq. ~5!,
i.e., the zeroth, the first, and the second. Namely, multiply
both sides of the kinetic equation by 1,mav, and mav2/2,
respectively, and integrating over the velocity*d3v produce
the equations of mass, momentum, and energy conserva
We notice that since only elastic collisions are under cons
eration here, self-collisions conserve mass, momentum,
energy in each gas, and therefore the three moments o
self-collision term on the right hand side of Eq.~5! vanish.

We generalize here the procedure which is used in
case of a single fluid@12#, and seek an approximate solutio
for the distribution functionsf 1 and f 2. We examine Eq.~5!
assuming that the system is collision dominated, and that
5-2
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HYDRODYNAMIC FLOW OF IONS AND ATOMS IN . . . PHYSICAL REVIEW E66, 066405 ~2002!
cross section for self-collision is far greater than that of
intercollisions. To estimate the role of the different terms
Eq. ~5! we introduce for each component three characteri
time scales: ta,flow—the scale of hydrodynamic flow
taa—the scale of self-collisions, andtab—the scale of in-
tercollisions, as follows:

D

Dt
f a'

f a

ta,flow
, Jaa@ f a , f a#'

f a

taa
, Jab@ f a , f b#'

f a

tab
.

~6!

The main assumption for our mixture is thatJaa is the domi-
nant term in the kinetic equation for thea species, or that in
terms of the time scales we havetaa!ta,flow , and taa
!tab . We therefore expand

f a. f a
(0)1 f a

(1) , ~7!

where

f a
(1).S taa

ta,flow
D f a

(0) ,S taa

tab
D f a

(0) , ~8!

i.e., f a
(1)! f a

(0) , and we can use perturbation theory. In t
spirit of the Chapman-Enskog method we also demand
f a

(1) in Eq. ~7! has no contribution to the zeroth, first, an
second velocity moments off a .

Since the dominant term of Eq.~5! is the first one on the
right-hand side, the zero order termf a

(0) is the solution of the
equation

Jaa@ f a
(0) , f a

(0)#50. ~9!

The solution to Eq.~9! is simply the Maxwell-Boltzmann
local thermodynamic equilibrium~LTE! distribution func-
tion, that is,

f a
(0)~r ,v,t !5na~r ,t !F ma

2pua~r ,t !G
3/2

3expF2
ma@v2ua~r ,t !#2

2ua~r ,t ! G . ~10!

Here na(r ,t), ua(r ,t), and ua(r ,t) are the threehydrody-
namics variablesof the a component of the mixture: the
local number density, average flow velocity, and kinetic te
perature, respectively~see the Appendix for the proper defi
nitions!. Having thef a

(0) expressed in terms ofna ,ua , and
ua , we substitute Eq.~7! into Eq. ~5! and find, to first order
in the small dimensionless expansion parame
(taa /ta,flow) and (taa /tab), an equation forf a

(1) :

D

Dt
f a

(0)~r ,v,t !5Jaa@ f a
(0) , f a

(1)#1Jaa@ f a
(1) , f a

(0)#

1Jab@ f a
(0) , f b

(0)#. ~11!

These are implicit equations forf 1
(1) , and f 2

(1) , stated in
terms of the six hydrodynamics variables, and the differen
cross sections. In principle, once they are solved forf 1

(1) and
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f 2
(1) , we return to Eq.~5!, substitute Eq.~7!, and obtain the

moment equations, i.e., the hydrodynamic equations for
mixture.

First we remark that, as for a single species, in the cas
the binary mixturef a

(1) , the small correction tof a
(0) , contrib-

utes only to the stress tensor,

@Pa~r ,t !# i j 5maE d3v@v i2ua,i~r ,t !#@v j2ua, j~r ,t !#

3$ f a
(0)~r ,v,t !1 f a

(1)~r ,v,t !%, ~12!

and to the thermal energy flux vector,

Ja~r ,t !5
1

2
ma

2E d3v@v2ua~r ,t !#@v2ua~r ,t !#2f a
(1)~r ,v,t !.

~13!

Here the indicesi , j correspond to the three Cartesian vec
components. Notice that for symmetry reasons the domin
part of the distribution functionf a

(0)(r ,v,t) contributes only
to the diagonal elements of the stress tensor„@Pa(r ,t)# i i … in
Eq. ~12!, and does not contribute to its off-diagonal elemen
nor to the thermal energy flux vector, Eq.~13!. Then we
observe that since the relevant moments of the first te
Jaa@ f a , f a#, on the right-hand side of Eq.~5! vanish, the
only direct contributions to the hydrodynamics of the mi
ture, due to the elastic collisions, come from the moments
Jab@ f a , f b#, the intercollision term. In the sense of our pe
turbation scheme, we end up with the following contrib
tions of the moments:

Ma
(n)5E d3vGa

(n)~v!Jab@ f a
(0) , f b

(0)#, ~14!

where

Ga
(1)~v!51, Ga

(2)~v!5mav, Ga
(3)~v!5mav2/2.

~15!

III. CALCULATION OF THE INTERCOLLISION
MOMENTS

We now wish to calculate the contribution of the interco
lisions to the hydrodynamic equations of a gas in a bin
mixture, e.g., the moments in Eqs.~14!,~15!. We focus on a
mixture of atoms and ions in a plasma, in which the atom
masses of the two components are practically equal.
effect of intercollisions is expected to be especially sign
cant in cases of large differences between the flow veloci
and the kinetic temperatures of the two components. Si
the case of similar~or identical! flow velocities with different
temperatures was widely treated in the past~e.g., magneto-
hydrodynamics in plasmas!, we concentrate here on the ca
of large relative flow differences between the two gases.
assume that the velocity distributions of the two compone
are narrow and separated from each other, i.e., we introd
the small parameters:
5-3
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ha[
ya

T

uua2ubu
!1, ~16!

whereya
T5A2ua /m is the thermal velocity in componenta,

which represents also the width of its velocity distribution.
other words, we focus on the case of a large drift between
two components, which is physically meaningful in a varie
of laboratory and natural plasmas. We will further assu
that the thermal velocity of each of the two gases is sm
compared also to the other characteristic scales of the
tem, in velocity space.

We now use these assumptions to calculate the mom
in Eqs.~14!,~15!. Examining Eq.~4! we see that each of th
velocity moments in Eq.~14! is composed of two terms
Ma,1

(n) ~the term with the primes in thef (0)’s! andMa,2
(n) . The

second term,

Ma,2
(n)52E d3vGa

(n)~v!E d3v1dVsab~V!uv

2v1u f a
(0)~v! f b

(0)~v1!, ~17!

can be cast into the form

Ma,2
(n)52E d3vGa

(n)~v!
f a

(0)~v!

tab~v!
, ~18!

where

1

tab~v!
[E d3v1E dVsab~V!uv2v1u f b

(0)~v1!. ~19!

The physical meaning oftab(v) will be discussed later. We
first observe that this can be written as

1

tab~v!
5nbSabyb

T F2~2x!2F2~x!

x
, ~20!

whereSab is the total cross section of an intercollision e
counter, with

x[uv2ubu/yb
T , ~21!

and

F2~x![E
x

`

dx8E
x8

`

dx9erfc~x9!. ~22!

To better understand the dependence oftab(v) on v we ap-
proximate it as

1

tab~v!
5nbSabH F0.121expS 2

uv2ubu

yb
T D Gyb

T1Uv2ubUJ .

~23!

Figure 1 illustrates the functional dependence of 1/tab(v)
uponv. The figure shows the exact expression, the appr
mate one, and the relative difference between them. We
tice that the approximation of Eq.~23! is indeed within about
one percent of Eq.~20!. Note that 1/tab(v) does not change
06640
e

e
ll
s-

ts

i-
o-

much (;25%) inside a sphere of radiusyb
T aroundub in

velocity space. We will get back to this point later on.
We now return to Eq.~17! and observe that sincef a

(0)(v)
is narrow, we may regardtab(v) as approximately constan
under the integration, and replace it bytab(ua). Hence

Ma,2
(n)52

1

tab~ua!
E d3vGa

(n)~v! f a~v!, ~24!

and Ma,2
(n) is proportional to the regular moments off a(v)

~see the Appendix!.
We turn now to the first term in Eqs.~14! Ma,1

(n) . Using
Eq. ~3!, adapting it to the case of equal atomic masses,
may write it as

Ma,1
(n)5E d3vE d3v1E d3v8E d3v18G~v,v1→v8,v18!d3~v

1v12v82v18!d~v21v1
22v822v81

2!

3Ga
(n)~v! f a

(0)~v8! f b
(0)~v18!. ~25!

Since the functionsf a
(0)(v8) and f b

(0)(v18) are assumed to be
separated, and narrow with respect to the character
scales of changes in velocity space, we can first carry
integration overv8 andv18 to find that

Ma,1
(n)5nanbE d3vE d3v1G~v,v1→ua ,ub!d3~v1v12ua

2ub!d~v21v1
22ua

22ub
2 !Ga

(n)~v!. ~26!

The intercollisions scattering potential can be approxima
using a hard spheres model~‘‘billiard balls’’ !. Under this
approximation

G~v,v1→ua ,ub!5G~v1 ,v→ua ,ub! ~27!

FIG. 1. The dependence of 1/tab(v) upon uv2ubu. 1/tab(v) is
given in units ofnbSab while uv2ubu is in units ofyb

T . Full thin
line: the exact function of Eq.~20!. Dashed line: the approximate
function of Eq.~23!. Thick line: the relative difference~%!.
5-4



co

s

lli
c

ac

vi-

e
ra

ns

g
ary
tic
the
the
a

ight
di-

xi-

e

ion
a

ory

e

the
the

l-
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~this is easily seen using geometrical considerations for
lisions between two identical hard spheres!, and we may
therefore replace the last expression forMa,1

(n) by

Ma,1
(n)5nanbE d3vE d3v1G~v,v1→ua ,ub!d3~v1v12ua

2ub!d~v21v1
22ua

22ub
2 !

Ga
(n)~v!1Gb

(n)~v1!

2
, ~28!

and obtain

Ma,1
(n)5nanbSabuua2ubu

Ga
(n)~ua!1Gb

(n)~ub!

2

'
na

tab~ua!

Ga
(n)~ua!1Gb

(n)~ub!

2
. ~29!

Combining Eqs.~24!,~29! we finally find, for the zero mo-
ment,

Ma
(1)50, ~30!

for the first moment,

Ma
(2)52mnanbSabuua2ubu

ua2ub

2

'2mnab~ua!
ua2ub

2
, ~31!

and for the second moment,

Ma
(3)52nab~ua!Fm

ua
22ub

2

4
1

3

2
uaG , ~32!

where nab(ua)[na /tab(ua) is the number of intercolli-
sions betweena andb per unit time per unit volume. Note
that for very small h ’s nab(ua)'nba(ub)([n), as ex-
pected.

These moments,Ma
(1) , Ma

(2) , andMa
(3) , are the contribu-

tions due to the ‘‘weak’’ inter-collisions to the flow equation
of gas a in a mixture in the present model. These term
describe the exchange of mass, momentum, and energy~re-
spectively! between the two mixed gases, due to interco
sions. We expect that intercollisions do not change the lo
individual mass of each component, nor the localtotal mo-
mentum and energy of the mixture. The conservation of e
component’s mass is indeed demonstrated by Eq.~30!, i.e.,
Ma

(1)50. The conservation of total local momentum is e
dent using Eq.~31!, sinceMa

(2)1Mb
(2)50. In contrast, the

total local energy is not exactly conserved, sinceMa
(3)

1Mb
(3)52 3

2 n(ua1ub). This is not surprising, since w
have practically neglected the individual kinetic tempe
tures of the two components in the mixture. In the sense
the approximation given by Eq.~16!, the error in the total
local energy conservation is of first order in theh8s of Eq.
~16!. In the next section we will obtain first order correctio
to Eqs.~30!–~32!.
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IV. RELAXATION TIME APPROXIMATION
AND FIRST ORDER CORRECTIONS

The results obtained in the previous section, Eqs.~30!–
~32!, indicate that the effect of the intercollisions is to brin
the dynamically separated two components of the bin
mixture to relax towards a common flow velocity and kine
temperature. This suggests that the intercollisions part of
Boltzmann relaxation term can be accounted for using
method of relaxation time approximation. This method is
useful tool in plasmas, and can give us here a better ins
to the results of the previous section, and even help in mo
fying them to include first order corrections inha , hb .

First let us recall the use of the relaxation time appro
mation in the case of one-component fluid, saya, where
only self-collisions are under considerations. In thesingle-
parameterrelaxation time approximation the right hand sid
of Eq. ~1!, e.g., the SC collision operator, is replaced by

Jaa@ f a , f a#→2
f a~r ,v,t !2 f a

0~r ,v,t !

taa
. ~33!

Here the effect of self-collisions is modeled as a relaxat
process, wheref a is approaching the LTE distribution over
time scaletaa . The stress tensorPa and thermal energy flux
vectorJa are then being calculated using perturbation the
for f a aroundf a

0 @12#. We first attempt to motivate Eq.~33!,
using the Boltzmann-collision operator of Eq.~4! for a single
species.

Again we notice that the expression forJaa in Eq. ~4! is
divided into two parts. The second one, namely,

J aa
(2)@ f a , f a#52E d3v1dVsaa~V!uv2v1u f a~v! f a~v1!,

~34!

can be clearly expressed as

J aa
(2)@ f a , f a#52

f a~v!

taa~v!
, ~35!

just by integrating overv1. Since within the integral overv1
the distribution functionf a(v1) can be approximated by
f a

(0)(v1), we get for the velocity dependent relaxation tim

1

taa~v!
5E d3v1dVsaa~V!uv2v1u f a

(0)~v1!, ~36!

which is equivalent to Eq.~19!. The first term of Eq.~4!,

J aa
(1)@ f a , f a#5E d3v1dVsaa~V!uv2v1u f a~v8! f a~v18!,

~37!

needs more attention. Since the primed velocities are
products of the binary collisions we again can replace
distribution functions by their zero order expressions, i.e.,f a

is replaced byf a
(0) . Furthermore, the conservation laws a

low the replacementf a
(0)(v8) f a

(0)(v18)⇒ f a
(0)(v) f a

(0)(v1) and
Eq. ~37! can be written as
5-5
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J aa
(1)@ f a , f a#5E d3v1dVsaa~V!uv2v1u f a

(0)~v! f a
(0)~v1!

5
f a

(0)~v!

taa~v!
,

with the sametaa(v) of Eq. ~36!, and thus

Jaa@ f a , f a#'2
f a~r ,v,t !2 f a

0~r ,v,t !

taa~v!
. ~38!

This justifies Eq.~33!, however, with a velocity-dependen
time scale,taa(v). Figure 1 shows the dependence of th
time scale onv ~simply change the subscriptsb to a in the
figure caption and axis!. It is easy to see thattaa(v) changes
very little ~by about a quarter! in a sphere of radiusya

T

aroundua . In velocity space most of the particles of the g
are located inside this sphere, and therefore using a con
relaxation time scale seems fairly appropriate.

We now wish to extend the method of relaxation tim
approximation~RTA! to the case of a binary gas mixture,
a manner that would result similar contributions, due to
tercollisions, to the flow equations, as were obtained in
previous section. We expect the relaxation term in Eq.~33!,
due to the intercollisions, to have a form analogous to tha
Eq. ~2!, i.e.,

Jab@ f a , f b#→2
f a~r ,v,t !2Fab~r ,v,t !

tab
, ~39!

where

Fab~r ,v,t !5na~r ,t !F ma

2pQab~r ,t !G
3/2

3expF2
ma@v2Uab~r ,t !#2

2Qab~r ,t ! G , ~40!

and

Uab5Uba , Qab5Qba . ~41!

Here the net effect of intercollisions is now assumed to m
f a relax towards a ‘‘common’’ LTE stateFab on a time scale
of tab @14#. The parameters of the common LTE~average
velocity and width of the distribution! are different from the
‘‘self-LTE’’ parameters of f a

0 . Equation~39! demands that
the first and second velocity moments ofFab ~the flow ve-
locity and kinetic temperature, respectively! are equal to
those ofFba ~to which the intercollisions forcef b to relax!.
This expresses the tendency of the intercollisions to eq
the flow velocity and kinetic temperature of the two specie

Using Eqs.~1!,~2!,~33!,~39! we get the equations of mo
tion for the distribution functions of two mixed gases in t
RTA scheme:

D

Dt
f a52

f a~r ,v,t !2 f a
0~r ,v,t !

ta
2

f a~r ,v,t !2Fab~r ,v,t !

tab
.

~42!
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The parameters ofFab in Eq. ~39!, Uab andQab , are func-
tions of the individual flow parameters of both compone
of the mixture. The velocity moments of Eq.~42! determine
the intercollisions contributions to the flow equations in t
RTA approximation. We compare these contributions to th
obtained at the end of the last section, Eqs.~30!–~32!. It is
easy to check that choosing

Uab~r ,t !5
ua~r ,t !1ub~r ,t !

2
, ~43!

Qab~r ,t !5
m

12
@ua~r ,t !2ub~r ,t !#2, ~44!

and

1

tab
5nbSabuua2ubu, ~45!

yields the desired result. Notice that the expressions forQab
and tab are independent of the individual kinetic temper
tures of the two gasesua andub . This is not surprising since
Uab(r ,t), Qab(r ,t), andtab(r ,t) were chosen to be appli
cable in the limit whereha andhb are very small, Eq.~16!,
which assumes that the individual kinetic temperatures of
gases are small, in some sense. Equations~30!–~32! include
only zero order terms inh1 and h2, and correspondingly
also Uab(r ,t), Qab(r ,t), and tab(r ,t) of Eqs. ~43!–~45!.
We now wish to use the RTA scheme to estimate the fi
order corrections inha and hb to the parametersQab(r ,t)
andtab(r ,t).

(i) The corrections toQab. We have stated before tha
Ma

(2) , which describes the exchange of energy between
two gases due to intercollisions, conserves the total lo
energy only to zero order inha andhb . We now suggest a
first order correction to the common kinetic temperatu
Qab . Writing Qab→Qab* 5Qab1DQ, where DQ/Qab

;ha ,hb , we examine the energy moment (*d3v 1
2 mav2) of

Eq. ~42!. The energy continuity equation is written as

]

]t
~ea!1“•~eaua!1“•Ja1“•~Pa•ua!2naFa•ua

5
1

tab
F3

2
naQab* 1

1

2
manaUab

2 2
3

2
naua1

1

2
manaua

2 G .
~46!

In order to have total local energy of the mixture conserv
we demand that the sum of the right hand sides of th
equations, over the two fluids should vanish, i.e.,

1

tab
F3

2
naQab* 1

1

2
mnaUab

2 2S 3

2
naua1

1

2
mnaua

2 D G
1

1

tba
F3

2
nbQab* 1

1

2
mnbUab

2 2S 3

2
nbub1

1

2
mnbub

2 D G
50. ~47!
5-6



r i

tio
s

ax

t

dy
s

ed

s

e
e
q

it

t

a
ys-
he
ra-
lli-
en
-
s,

a-

2

ary
qs.
ns

of
in-

get

nd

es,

HYDRODYNAMIC FLOW OF IONS AND ATOMS IN . . . PHYSICAL REVIEW E66, 066405 ~2002!
Since, by Eq.~41!, Qab* 5Qba* , Uab5Uba and, by Eq.
~45!, na /tab5nb /tba , and substitutingQab* 5Qab1DQ,
we find that the last expression reduces into

6~Q1DQ!12mU223~ua1ub!2m~ua
21ub

2 !50,
~48!

which is the desired equation forDQ. SubstitutingQ andU
from Eqs.~43!,~44! we find thatDQ5(ua1ub)/2, which is
indeed a first order correction toQab , in ha and hb . In
summary the common kinetic temperature up to first orde
ha andhb is

Qab~r ,t !5
m

12
@ua~r ,t !2ub~r ,t !#21

ua1ub

2
. ~49!

(ii) The corrections totab. Equation~23! gives an ap-
proximate expression for the velocity-dependent relaxa
time tab(v). It represents the effect of many intercollision
encounters on a particle of componenta, having a specific
velocity v. It is reasonable to suggest that theconstantrelax-
ation timetab should be the average oftab(v) over all the
particles of componenta:

1

tab~r ,t !
5E d3v f a~r ,t !

1

tab~r ,v,t !
. ~50!

Again, we can use Eq.~7! to replacef a by f a
(0) in the inte-

gration. We now use the approximate expression oftab(v) in
Eq. ~23! to to gettab , in the limit of Eq. ~16!. Neglecting
second order effect inha andhb we get that

1

tab
5nbSab@ uua2ubu10.12~ya

T1yb
T!#. ~51!

Indeed we see that this expression fortab is a sum of the
zero order term, which was already obtained in Eq.~45!, and
a first order correction inha andhb .

To summarize, we have developed a simple RTA rel
ation term, given by Eqs.~42!, for the dynamics of two,
collisional coupled mixed gases. We have also calculated
appropriate parameters, given by Eqs.~43!,~49!,~51!, in this
RTA scheme. This, in turn, reproduces the proper hydro
namic equations for a binary mixture, in the important ca
where a significant flow velocity difference is maintain
between the two components of the fluid~i.e., with no sig-
nificant overlap between the two distribution functions!.

The RTA approach interprets the effect of collisions a
combination of two different relaxation processes:~i! Colli-
sions between the same particles, e.g., of fluida, which tend
to relax this fluid into its own LTE state on a time scaletaa .
This is the faster of the two processes.~ii ! Intercollisions
between particles of fluidsa andb, which tend to relax each
fluid from its own LTE towards a common LTE, on a tim
scale oftab . In this common LTE the two fluids have th
same flow velocity and kinetic temperature. Note that E
~51! yieldstab5” tba . Actually we see that the~local! ‘‘rate’’
of relaxation of each gas is proportional to the local dens
of the other gas. Defining
06640
n

n

-

he

-
e
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.

y

nab5na /tab5nanbSab@ uua2ubu10.12~ya
T1yb

T!#
~52!

as the number of collisions of particle of speciesa with
particles of speciesb, per unit time per unit volume, we ge
nab5nba , as expected.

Before we use the suggested kinetic Eqs.~39!-~51! to de-
rive the resulting moments equations, we like to offer
qualitative description of the expected dynamics of the s
tem. We examine the case for which the two fluids in t
mixture have separate flow velocities and kinetic tempe
tures, that is when the coupling effect of interspecies co
sions is weaker then the effect of self-collisions. We th
expect to havet11,t22!t12,t21, and thus expect the distri
bution functionsf 1 , f 2 to first relax on the short time scale
t11,t22, respectively, to LTE forms, like that of Eq.~10!,
with different parameters of flow velocity (u15” u2) and ki-
netic temperature (u15” u2). However, on the long time
scales,t12,t21, respectively, we expect the characteristic p
rameters of both LTE distributions,u1 ,u1 andu2 ,u2, to be-
comeU,Q, respectively~where we now omit the indices 1
from thecommonvelocity and kinetic temperature!.

We are now ready to summarize our analysis of the bin
mixture. Using the results for the relaxation terms, E
~39!–~51!, and taking the moments of the kinetic equatio
for f a and f b , we write down the set of hydrodynamic flow
equations for the mixture as follows.

(1) Conservation of mass,

]

]t
mana1“•~manaua!5S ab, ~53!

whereS ab on the right-hand side represents the sources
the masses. Since the intercollision encounters do not
volve mass flux or exchange between the two fluids, we

Sic
ab50. ~54!

(2) Conservation of momentum,

]

]t
~manaua!1“•ua~manaua!1“•Pa2naFa5F ab,

~55!

where, here,F ab corresponds to momentum sources, a
equals

Fic
ab5manab

~ua2ub!

2
. ~56!

(3) Conservation of energy,

]

]t
ea1“•uaea1“•Ja1“•~Pa•ua!2naFaua5H ab,

~57!

where nowH ab takes care of the energy density sourc
and is
5-7
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Hic
ab5nabF3

4
~ub2ua!1

1

2
ma~U22ua

2 !G
1nab

ma

8
~ua2ub!2. ~58!

Note thatnab from Eqs.~56!,~58! is explicitly given above,
in Eq. ~52!.

This is our general result for the flow equations of a m
ture of two coupled gases. The collisional coupling betwe
the two components of the mixture is expressed by the
of change of momentum,Fic

ab of Eq. ~56!, and by the energy
rate of change,Hic

ab of Eq. ~58!. Fic
ab represents the colli-

sional drag which fluidb exerts on fluida. Hic
ab describes

the energy exchange between the two fluids due to the in
action between them: the first term indicates the tendenc
the two components to reach a common temperature;
second term describes the relaxation of the kinetic energ
the center-of-mass kinetic energy of both fluids; and the th
term comes from dissipation of kinetic energy into therm
energy. We can further simplify the expression forHic

ab by
substituting the expression forUab , Eq. ~43!:

Hic
ab5nabF3

4
~ub2ua!1

1

4
ma~ub

22ua
2 !G . ~59!

V. IONIZATION, RECOMBINATION,
AND CHARGE EXCHANGE

Up to now our discussion was valid forany mixture of
two collisional coupled gases, with equal or very nea
equal atomic masses, when a difference in both flow velo
ties and kinetic temperatures is maintained. In the cas
partially ionized plasma, we have dealt only with one of t
four coupling mechanism between the neutral-species
~atoms! and the charged-species gas~ions and electrons! of
which this ‘‘mixture’’ consists@13#. While intercollisionsex-
changemomentum and energy between these two gases
three additional coupling mechanisms—ionization, recom
nation, and charge exchange—exchange alsomassbetween
the atoms and the ions. We now suggest to investigate t
additional coupling mechanisms, using a RTA scheme, s
lar to that of the elastic intercollisions. To carry on this pr
gram we reexamine Eqs.~42! in the presence of additiona
coupling mechanisms between the species. We shall use
indicesa andi for atoms and ions, respectively. We return
Eq. ~1! and recall that the influence of the close-range int
actions between the particles, has been denoted
(] f /]t)coll , and we write it now as

S ]

]t
f aD

coll

5S ]

]t
f aD

sc

1S ]

]t
f aD

ic

1S ]

]t
f aD

ir

1S ]

]t
f aD

cx

.

~60!

Here the first term on the right-hand side stands for the
fluence of self-collisions~in fact all close-range interactions!
inside each component in the mixture, the second term
resents the influence of interspecies collisions, which w
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discussed in previous sections, the third term stands
ionization-recombination, and the forth term stands
charge exchange.

Before we continue to investigate the roles of charge
change, ionization and recombination on the flow equati
for plasmas, let us re-express the source terms due to a
ion intercollisions. In the present notations we have

a, b→ a, i ,

taa , tab , nab→ tsc
a , t ic

ai , n ic
ai ,

S ab, F ab, H ab→ Sic
ai , Fic

ai , Hic
ai

~swapa and i to get the expressions in the ions flow equ
tions!. For example, the expression in Eq.~56!, for the effec-
tive drag exerted on the atoms by the ions, is now written

Fic
ai52mn ic

ua2ui

2
. ~61!

We start with the rate of change of the distribution fun
tions due to ionization and recombination~IR!. In analogy
with Eq. ~39! we take, as was also suggested by Catto@3#
and Hazeltineet al. @15#,

S ]

]t
f aD

ir

52
f a

t ion.
1

f i

t rec.
,

S ]

]t
f i D

ir

51
f a

t ion.
2

f i

t rec.
, ~62!

wheret ion. is the mean ‘‘lifetime’’ of an atom in the plasm
before it is ionized, andt rec. is the mean lifetime of an ion
before a recombination with an electron. Examining E
~62! we clearly recognize that the terms describing ionizat
and recombination processes introduce exchange of m
momentum, and energy between the atoms and the i
though conservation of the total values of these quantitie
the plasma is maintained by these equations. Taking the
ments of Eqs.~62! additional terms should be added to Eq
~53!,~55!,~57!. Defining the ionization and recombinatio
rates asn ion.5na /t ion. andn rec.5ni /t rec. we get that the rate
of mass transfer from the ions to the atoms, due to the
processes, is

Sir
ai52n ion.ma1n rec.ma ; ~63!

the effective drag force exerted by the ions on the atoms

Fir
ai52n ion.maua1n rec.maui ; ~64!

and, finally, the energy transfer rate from the ions to
atoms, by IR, is

Hir
ai52n ion.

1

2
maua

21n rec.

1

2
maui

2 ~65!
5-8



e
io
rr

q

tic

d

p

is
n
a

ion

xi

e

e
ly

a
o
ed
W

rg
flo
te
re
ith
io
e
e

ity

nd
ons,
.
in

ero

ua-

w
re-
nts

s a

tion

HYDRODYNAMIC FLOW OF IONS AND ATOMS IN . . . PHYSICAL REVIEW E66, 066405 ~2002!
in the atoms ‘‘energy’’ equation. The same terms now app
also in the ions-gas mass, momentum and energy equat
however, with opposite signs. Note that the mass transfe
in a single ionization or recombination event is alwaysma .

We then turn to the last term of Eq.~60!, and study the
effect of charge exchange on the source terms of E
~53!,~55!,~57!. Using Eqs.~2!,~4! we find the Boltzmann col-
lision operator for charge exchange reactions as

S ]

]t
f i D

cx

5E d3v1scx~ uv2v1u!uv2v1u@ f i~v1! f a~v!

2 f i~v! f a~v1!# ~66!

~swap a and i to get the expression in the atoms kine
equation!. Note that in a charge exchange reactionv,v1

→v1 ,v, and therefore we have usedv8,v185v1 ,v to get the
last expression.

The cross section for a charge exchange reaction
creases with increasing values of the impact velocity@16,17#.
The general approach to incorporate charge exchange
cesses in the kinetic level is to assume thatscx(uv2v1u)•uv
2v1u varies slowly in velocity space, and to neglect th
variation @2,3,15#. This conjecture simplifies the Boltzman
collision operator for the charge exchange and allows
easy derivation of its velocity moments, e.g., its contribut
to the flow equations.

The velocity dependence ofscx on uv2v1u is not, how-
ever, an inverse-proportional rule. The well known appro
mate relation for asymmetric resonantcharge exchange@18#,

Ascx~ uv2v1u!52k1ln~ uv2v1u!1k2 , ~67!

was theoretically suggested previously@16#, and confirmed
in experiments@17#. It is therefore clear that neglecting th
variation of scx(uv2v1u)uv2v1u is appropriate only for a
very small range of impact velocities~or energies!. Alas, in a
mixture of atoms and ions~a partially ionized plasma! the
range of impact velocities is not small enough forscx(uv
2v1u)uv2v1u to be constant. Atoms and ions coexist togeth
in a plasma up to temperatures of 2–3 eV s. According
even without relative flow between the two species,scx(uv
2v1u)uv2v1u changes a lot. For example, in Ar plasm
scx(uv2v1u)•uv2v1u changes by 100% or so, in the range
1–3 eV. When a significant relative flow is also consider
the changes may be more than an order of magnitude.
conclude that the traditional approach to deal with cha
exchange is not adequate for the case of large relative
between the atoms and the ions, in which we are interes

We want to find the contribution of charge exchange
actions to the flow equations of mixed atoms and ions, w
out assuming the inverse-proportional law of cross sect
The formalism that we have developed in the previous s
tions allows it, especially when a large relative flow is d
veloped. As in Eqs.~14!,~15!, the contributions of charge
exchange to the flow equations are the following veloc
moments of the collision operator:
06640
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Mi
(n),cx5E d3vG(n)~v!E d3v1scx~ uv2v1u!uv

2v1u@ f i~v1! f a~v!2 f i~v! f a~v1!#, ~68!

whereG(n)(v) is defined as in Eq.~15!. The last expression
is easily cast into the symmetrical form

Mi
(n),cx5E d3vd3v1

G(n)~v!2G(n)~v1!

2
scx~ uv2v1u!uv

2v1u@ f i~v1! f a~v!2 f i~v! f a~v1!#. ~69!

The case of large relative flow is expressed by Eq.~16!,
which means that the distribution functions of the atoms a
the ions are narrow and separated. Under such conditi
the value of scx(uv2v1u)—for example, as given in Eq
~67!—is almost constant under the velocity integrations
Eq. ~69!. Similarly, also the other variables of thef ’s inside
these velocity moments are almost fixed. Therefore, to z
order in theh ’s of Eq. ~16!, the velocity moments of the
charge exchange collision integral in the ions kinetic eq
tion are

Mi
(1),cx50, ~70!

Mi
(2),cx52mncx~ui2ua!, ~71!

Mi
(3),cx52mncx

ui
22ua

2

2
, ~72!

where

ncx5ninauui2uauscx~ uui2uau! ~73!

@swap the indicesa and i to get the equivalent of Eqs.~70!–
~73! for the atoms flow equations#. Here ncx is the rate of
atom-ion charge exchange reactions in a unit volume.

By now we have obtained zero order expressions~in
ha ,h i) for the contribution of charge exchange to the flo
equations. From our treatment in elastic collisions we
member that first order corrections for the velocity mome
were obtained using a relaxation time approximation~see
Sec. IV!. To get first order corrections to Eqs.~70!–~73! we
suggest the following RTA model:

S ]

]t
f aD

cx

52
f a2lai f i

tcx
ai

,

S ]

]t
f i D

cx

52
f i2l ia f a

tcx
ia

, ~74!

with

tcx
ai5na /ncx , tcx

ia5ni /ncx . ~75!

tcx
ai is the average lifetime of an atom before it undergoe

charge exchange reaction and becomes an ion, whiletcx
ia is

the average lifetime of an ion before it undergoes a reac
and transforms to be an atom, andlai , l ia are assumed to be
5-9
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independentof velocity space. The meaning of thel8s will
shortly be revealed. First we want to give an intuitive int
pretation to Eq.~74!, and compare it with the RTA descrip
tion of the elastic intercollisions in Eqs.~39!–~41!. Back
there our interpretation was that intercollisions encounter
tween the two gases relax both of them into a joint state
which they have the common flow velocity and kinetic te
perature. Our interpretation for charge exchange, howeve
naturally different. Equation~74! mean that the net effect o
many charge exchange reactions is to bring the velocity
pendence off a directly to the that off i ~and vice versa!. This
is quite reasonable since an atom-ion charge exchange
tion swap the charge of the two particles, without any cha
of their velocity or mass. A large number of charge exchan
reactions therefore will make the atoms behave like ions
velocity space~and vice versa!, while they conserve mas
and particle density of each fluid. Note also that, exactly
the result for elastic intercollisions, the relaxation times
atoms and ions due to charge exchange are not equal
rather related to each other like their number ratios.

Since locally the total rate of changes, due to charge
change, is conserved, i.e., (] f a /]t)cx1(] f i /]t)cx50, we get
from Eqs.~74!

f aS 1

tcx
ai

2
lai

tcx
ia D 1 f iS 1

tcx
ia

2
l ia

tcx
ai D 50. ~76!

In order for this to hold for allf a and f i , the bracketed
expressions in this equation should vanish. We therefore c
clude that

lai5
tcx

ai

tcx
ia

, l ia5
tcx

ia

tcx
ai S therefore lai5

1

l ia
D , ~77!

or, using Eq.~75!,

lai5
na

ni
, l ia5

ni

na
. ~78!

We see that thel ’s are practically weight factors which con
serve the particle~and mass! density during charge exchang
reactions ineachfluid. Actually, it is easily seen that Eq.~78!
also secures conservation oftotal momentum and energy o
the mixture. For example, applying the first velocity mome
on Eqs.~74! and using Eq.~78! we get

2
mana~ua2ui !

tcx
ai

2
mani~ui2ua!

tcx
ia

50. ~79!

The contribution of charge exchange to the drag exe
by the ions on the atoms is simply@compare this result with
Eq. ~61!#

Fcx
ai52mncx~ua2ui !, ~80!

while exactly the opposite force exerted by the atoms on
ions. At this point it is interesting to discuss the differen
between the drag force,Fic

ai of Eq. ~61!, which is due to the
intercollisions coupling, andFcx

ai of Eq. ~80!, which is caused
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by the charge exchange coupling. We observe that they
not differ only by their different rates,n ic andncx , but also
by a factor of 1/2. This means thateach charge exchange
reaction is twice ‘‘stronger’’ than the equivalent elastic inte
collision. The result is intriguing, since it corresponds to
microscopicresult. A charge exchange reaction between
atom and an ion is analog~in its results! to ahead-onelastic
intercollision. The momentum which is transferred in
head-oncollision between two particles of the same ma
with definite velocities, is exactly twice the momentu
transferred in anaverageelastic collision between two par
ticles having the same definite velocities.

To get the contribution of charge exchange to the ene
transfer between the two mixed components in the plas
we apply the second order velocity moment on Eqs.~74!.
The energy transferred from the ions to the atoms is

Hcx
a 52ncxF1

2
m~ua

22ui
2!1

3

2
~ua2u i !G . ~81!

This expression includes the desired first order correction
our previous second order velocity moment, Eq.~72!. Note
that the contribution of charge exchange to the flow eq
tions has the same expression as that of elastic interc
sions, Eq.~59!. They only differ in their rates, and, again, b
the factor of 2.

Finally, we want to suggest an intuitive first order corre
tion to ncx . The expression for the rate of charge exchange
Eq. ~73! depends uponuua2ui u, and is independent of the
thermal velocities of the two components. We suggest t
the first order correction should be something like

ncx;nina~ uui2uau1ya
T1y i

T!scx~ya
T1y i

T1uui2uau!,
~82!

similar to the case of elastic intercollisions.

VI. DISCUSSION

In summary, we have derived the hydrodynamic equati
of motion for a partially ionized plasma, when the charg
component, and the neutral component, have different fl
velocities and different temperatures. We have started by
senting a general procedure, in the kinetic level, to treat
hydrodynamics of a gas in a general binary mixture, wh
the interaction between particles of the same species is m
stronger than that between particles of different species. T
procedure was used to derive the interspecies interac
terms in the flow equations of two mixed gases, of eq
atomic masses, with a large difference between their fl
velocities. These interaction terms were later refined, by
troducing a generalized version of the standard relaxa
time approximation. The extended relaxation time appro
mation was then used to consider various processes of
counters between the two species, and to obtain the
ments’ equations for each of them. The following proces
of interactions were studied: self-collisions, interspecies c
lisions, ionization, recombination, and charge exchange.
hydrodynamic equations are summarized by the three c
servation equations for the mass, Eq.~53!, the momentum,
5-10
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Eq. ~55!, and the energy, Eq.~57!, for ions and atoms, wher
the Greek indices are replaced byi for ions, anda for atoms.
Our results are contained in the source terms of these e
tions. This is outlined as follows:

~i! The mass equation source is only due to the ioniza
and recombination processes. The rate of mass transfer
the ions to the atoms is

S ai5Sir
ai , ~83!

which is given by Eq.~63!. The mass source term for th
ions is thenS ia52Sir

ai .
~ii ! The momentum equation source is caused by all

interspecies processes. The rate of momentum transfer
the ions to the atoms is

F ai5Fic
ai1Fir

ai1Fcx
ai , ~84!

with the different drag forces given by Eqs.~61!,~64!,~80!,
respectively. An analogous momentum source term is
tained for the ions.

~iii ! The energy equation source is also due to all
interspecies processes. The rate of energy transfer from
ions to the atoms is

H ai5Hic
ai1Hir

ai1Hcx
ai , ~85!

where the various energy sources are given by Eq.~58!, with
a replaced bya and b by i, Eqs. ~65! and ~81!. Again, an
analogous energy source term is obtained for the ions.

~iv! Each of the above collision processes is character
by a single rate. These rates arensc

a , nsc
i , n ic , n ion. , n rec., and

ncx , representing the rates of intraspecies encounters, in
species encounters, ionization reactions, recombination r
tions, and charge exchange encounters, respectively.
strength of each coupling process is proportional to its ch
acteristic rate. These rates may be either calculated usi
model for the system, or established phenomenologically
comparing to experiment.

We have derived explicit expressions for the rates of e
tic collisions and charge exchange reactions. We would n
like to relate to some consequences of these expression

~i! We have already pointed out that, at the level of t
flow equations, the effects of elastic intercollisions a
charge exchange reactions differ only in their rates. Th
rates are given in Eq.~52! for elastic intercollisions and in
Eq. ~82! for charge exchange. Comparing the two rates
notice that they differ only in the cross section of a sing
encounter, which is known to be generally bigger for cha
exchange. However, the cross section of intercollisions
constant to good approximation—and is of the order
p(2r a)2 in the hard spheres picture—while that of th
charge exchange cross section, i.e., Eq.~67!, decreases with
increasing impact velocities. In cases of large relative flo
the charge exchange cross section may decrease to v
similar to that of elastic intercollisions.

~ii ! The expressions for the intercollisions time scales,t ic
ai

and t ic
ia , in Eq. ~51!, together with the expressions fo

tsc
a (v),tsc

i (v) ~see Sec. IV!, allow us to check the consistenc
of our approximations. Remember that our whole descript
06640
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is based on the assumption that the effect of self-collision
much stronger than that of the intercollisions, or as we h
expressed it in Sec. II:tsc

a (v),tsc
i (v)!t ic

ai , t ic
ia . Now we

have explicit expressions for these time scales:taa(v) stands
for the implicit tsc

a while tab or tab(ub) for t ic
ai , etc. When

we compare the two relaxation times, as expressed by

tsc
aa

t ic
ai

;
ni

na

Sai

Saa

y i
T1uua2ui u

ya
T

,

tsc
i i

t ic
ia

;
ni

na

S ia

S i i

y i
T1uua2ui u

y i
T

, ~86!

we observe that to secure our basic assumptions in the
of large relative flow difference, the cross sections rat
Sai /Saa and S ia /S i i must be much smaller than the sma
parametersha andh i .

Finally, we would like to suggest criteria to determin
whether the dynamics of a mixture of two gases should
considered as a single fluid, or rather as two separate flu
We mention two cases in which individual flow equatio
should be used to each component:

~i! When an initial value problem is considered for tw
mixed gases with different flow parameters. In this case, the
flow parameters of the two components, i.e., the flow vel
ity and kinetic temperature, relax towards common valu
on time scalest ic

ai andt ic
ia ~or with cx subscripts for charge

exchange encounters!. The final common flow velocity and
kinetic temperature may be determined by consideration
momentum and energy conservation. We conclude that
separate fluids treatment is therefore crucial when consi
ing time scales on the order of~or shorter than! the intercol-
lisions or charge exchange relaxation times.

~ii ! When there is an appreciable difference in the acti
of external forces on the two gases. This situation may occur
in partially ionized plasmas: when significant electroma
netic forces are present there is a major difference betw
Fa and Fi of Eq. ~55!. While Fa is negligible in laboratory
plasmas, or is just the force of gravitation in astrophysi
plasmas,Fi also includes the electromagnetic forces@q(E
1v3B/c)#. The charge species is then driven differen
than the neutral one, and a relative drift develops. We m
consider a quasiequilibrium between the different forces a
ing on each fluid, in which a steady drift is established.
steady relative drift means that the accelerations of the
components, due to their responses to the different exte
fields, are equal. Using Eq.~55! with Eqs.~61!,~64!,~80! and
Eqs. ~52!,~82! we may find an equation for the ‘‘steady
relative drift,Duia

steady, in such a quasiequilibrium:

uDuia
steadyumaH nFncx~ uDuia

steadyu!1
n ic~ uDuia

steadyu!
2 G1nan ion.

1nin rec.J 5unani~Fi2Fa!2~na“•Pi2ni“•Pa!u,

~87!
5-11



e
va
bo

o
o

rd
o
e

ug
r
a
e

by

-

e
e

R. A. NEMIROVSKY, D. R. FREDKIN, AND A. RON PHYSICAL REVIEW E66, 066405 ~2002!
with n5na1ni . Equation~87! shows that the rates of th
various encounters and reactions, together with the local
ues of the external forces, pressures, and densities of
components, determine the magnitude ofDuia

steady, and there-
fore whether the atom and the ions are ‘‘stuck’’ together,
not. Using Eq.~87! one can estimate the expected values
the relative drift in a certain physical situation, and acco
ingly decide whether to use a single-fluid flow equations
the multiflow equations, which are investigated in the pres
paper.
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APPENDIX

Consider a mixture of two fluids, which are described
the distribution functionsf a(r ,v,t), wherer is the position,
v is the velocity,t is the time, anda is the species index. We
recall that the hydrodynamic quantities~density, flow veloc-
ity, kinetic temperature, etc.! are defined as velocity mo
ments off a(r ,v,t). We define the following moments.

(i) Number density,

na~r ,t ![E d3v f a~r ,v,t !

and mass densityra5ma•na ; ~A1!

(ii) flow velocity,
s.

E

tti,

y

f
,

06640
l-
th
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f
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r
nt
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-
s
-

ua~r ,t ![F E d3vvf a~r ,v,t !G /na~r ,t !; ~A2!

(iii) kinetic energy density,

ea~r ,t ![E d3v
1

2
mav2f a~r ,v,t !

5
1

2
mana~r ,t !ua~r ,t !21

3

2
na~r ,t !ua~r ,t !,

~A3!

whereua is defined as:

(iv) kinetic temperature,

ua~r ,t ![F1

3
maE d3v@v2ua~r ,t !#2f a~r ,v,t !G /na~r ,t !.

~A4!

Notice thatea is the sum of the flow kinetic energy and th
‘‘thermal’’ kinetic energy~the phrase ‘‘thermal’’ is used her
in a general sense!.

(v) Stress tensor,

@Pa~r ,t !# i j [maE d3v@v i2ua,i~r ,t !#@v j

2ua, j~r ,t !# f a~r ,v,t !; ~A5!

(vi) thermal energy flux,

Ja~r ,t ![
1

2
ma

2E d3v@v2ua~r ,t !#@v2ua~r ,t !#2f a~r ,v,t !.

~A6!
s
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